stylix/palette-generator/Ai/Evolutionary.hs
2024-12-24 16:04:27 +01:00

128 lines
4.1 KiB
Haskell

{-# LANGUAGE MultiParamTypeClasses #-}
module Ai.Evolutionary ( Species(..), evolve ) where
import Data.Ord ( Down(Down), comparing )
import Data.Vector ( (!) )
import qualified Data.Vector as V
import Data.Vector.Algorithms.Intro ( selectBy )
import System.Random ( randomRIO )
import Text.Printf ( printf )
numSurvivors :: Int
numSurvivors = 500
numNewborns :: Int
numNewborns = 50000 - numSurvivors
mutationProbability :: Double
mutationProbability = 0.75
randomFromVector :: V.Vector a -> IO a
randomFromVector vector = do
index <- randomRIO (0, V.length vector - 1)
return $ vector ! index
{- |
A genotype is a value which is generated by the genetic algorithm.
The environment is used to specify the problem for which
we are trying to find the optimal genotype.
-}
class Species environment genotype where
-- | Randomly generate a new genotype.
generate :: environment -> IO genotype
-- | Randomly mutate a single genotype.
mutate :: environment -> genotype -> IO genotype
-- | Randomly combine two genotypes.
crossover :: environment -> genotype -> genotype -> IO genotype
-- | Score a genotype. Higher numbers are better.
fitness :: environment -> genotype -> Double
initialPopulation :: Species e g
=> e -- ^ Environment
-> IO (V.Vector g) -- ^ Population
initialPopulation environment
= V.replicateM numSurvivors (generate environment)
-- | Expand a population by crossovers followed by mutations.
evolvePopulation :: Species e g
=> e -- ^ Environment
-> V.Vector g -- ^ Survivors from previous generation
-> IO (V.Vector g) -- ^ New population
evolvePopulation environment population = do
let randomCrossover = do
a <- randomFromVector population
b <- randomFromVector population
crossover environment a b
randomMutation chromosome = do
r <- randomRIO (0.0, 1.0)
if r <= mutationProbability
then mutate environment chromosome
else return chromosome
newborns <- V.replicateM numNewborns randomCrossover
let nonElites = V.tail population V.++ newborns
nonElites' <- V.mapM randomMutation nonElites
return $ V.head population `V.cons` nonElites'
selectSurvivors :: Species e g
=> e -- ^ Environment
-> V.Vector g -- ^ Original population
-> (Double, V.Vector g) -- ^ Best fitness, survivors
selectSurvivors environment population =
let -- Fitness is stored to avoid calculating it for each comparison.
calculateFitness g = (fitness environment g, g)
getFitness = fst
getGenotype = snd
compareFitness = comparing $ Down . fst
-- Moves k best genotypes to the front, but doesn't sort them further.
selectBest k vector = selectBy compareFitness vector k
selected = V.modify (selectBest 1)
$ V.take numSurvivors
$ V.modify (selectBest numSurvivors)
$ V.map calculateFitness population
in ( getFitness $ V.head selected
, V.map getGenotype selected
)
shouldContinue :: [Double] -- ^ Fitness history
-> Bool
shouldContinue (x:y:_) = x /= y
shouldContinue _ = True
evolutionLoop :: Species e g
=> e -- ^ Environment
-> [Double] -- ^ Fitness history
-> V.Vector g -- ^ Survivors from previous generation
-> IO (V.Vector g) -- ^ Final population
evolutionLoop environment history survivors =
do
population <- evolvePopulation environment survivors
let (bestFitness, survivors') = selectSurvivors environment population
history' = bestFitness : history
printf "Generation: %3i Fitness: %7.1f\n"
(length history') (head history')
if shouldContinue history'
then evolutionLoop environment history' survivors'
else return survivors'
-- | Run the genetic algorithm.
evolve :: Species e g
=> e -- ^ Environment
-> IO g -- ^ Optimal genotype
evolve environment = do
population <- initialPopulation environment
survivors <- evolutionLoop environment [] population
return $ V.head survivors