hayai/vendor/github.com/icza/bitio/README.md

97 lines
4.1 KiB
Markdown
Raw Permalink Normal View History

2024-12-21 17:26:50 +01:00
# bitio
[![Build Status](https://travis-ci.org/icza/bitio.svg?branch=master)](https://travis-ci.org/icza/bitio)
[![GoDoc](https://godoc.org/github.com/icza/bitio?status.svg)](https://godoc.org/github.com/icza/bitio)
[![Go Report Card](https://goreportcard.com/badge/github.com/icza/bitio)](https://goreportcard.com/report/github.com/icza/bitio)
[![codecov](https://codecov.io/gh/icza/bitio/branch/master/graph/badge.svg)](https://codecov.io/gh/icza/bitio)
Package `bitio` provides an optimized bit-level `Reader` and `Writer` for Go.
You can use `Reader.ReadBits()` to read arbitrary number of bits from an `io.Reader` and return it as an `uint64`,
and `Writer.WriteBits()` to write arbitrary number of bits of an `uint64` value to an `io.Writer`.
Both `Reader` and `Writer` also provide optimized methods for reading / writing
1 bit of information in the form of a `bool` value: `Reader.ReadBool()` and `Writer.WriteBool()`.
These make this package ideal for compression algorithms that use [Huffman coding](https://en.wikipedia.org/wiki/Huffman_coding) for example,
where decision whether to step left or right in the Huffman tree is the most frequent operation.
`Reader` and `Writer` give a _bit-level_ view of the underlying `io.Reader` and `io.Writer`, but they also
provide a _byte-level_ view (`io.Reader` and `io.Writer`) at the same time. This means you can also use
the `Reader.Read()` and `Writer.Write()` methods to read and write slices of bytes. These will give
you best performance if the underlying `io.Reader` and `io.Writer` are aligned to a byte boundary
(else all the individual bytes are assembled from / spread to multiple bytes). You can ensure
byte boundary alignment by calling the `Align()` method of `Reader` and `Writer`. As an extra,
`io.ByteReader` and `io.ByteWriter` are also implemented.
### Bit order
The more general highest-bits-first order is used. So for example if the input provides the bytes `0x8f` and `0x55`:
HEXA 8 f 5 5
BINARY 1100 1111 0101 0101
aaaa bbbc ccdd dddd
Then ReadBits will return the following values:
r := NewReader(bytes.NewBuffer([]byte{0x8f, 0x55}))
a, err := r.ReadBits(4) // 1100 = 0x08
b, err := r.ReadBits(3) // 111 = 0x07
c, err := r.ReadBits(3) // 101 = 0x05
d, err := r.ReadBits(6) // 010101 = 0x15
Writing the above values would result in the same sequence of bytes:
b := &bytes.Buffer{}
w := NewWriter(b)
err := w.WriteBits(0x08, 4)
err = w.WriteBits(0x07, 3)
err = w.WriteBits(0x05, 3)
err = w.WriteBits(0x15, 6)
err = w.Close()
// b will hold the bytes: 0x8f and 0x55
### Error handling
All `ReadXXX()` and `WriteXXX()` methods return an error which you are expected to handle.
For convenience, there are also matching `TryReadXXX()` and `TryWriteXXX()` methods
which do not return an error. Instead they store the (first) error in the
`Reader.TryError` / `Writer.TryError` field which you can inspect later.
These `TryXXX()` methods are a no-op if a `TryError` has been encountered before,
so it's safe to call multiple `TryXXX()` methods and defer the error checking.
For example:
r := NewReader(bytes.NewBuffer([]byte{0x8f, 0x55}))
a := r.TryReadBits(4) // 1100 = 0x08
b := r.TryReadBits(3) // 111 = 0x07
c := r.TryReadBits(3) // 101 = 0x05
d := r.TryReadBits(6) // 010101 = 0x15
if r.TryError != nil {
// Handle error
}
This allows you to easily convert the result of individual `ReadBits()`, like this:
r := NewReader(bytes.NewBuffer([]byte{0x8f, 0x55}))
a := byte(r.TryReadBits(4)) // 1100 = 0x08
b := int32(r.TryReadBits(3)) // 111 = 0x07
c := int64(r.TryReadBits(3)) // 101 = 0x05
d := uint16(r.TryReadBits(6)) // 010101 = 0x15
if r.TryError != nil {
// Handle error
}
And similarly:
b := &bytes.Buffer{}
w := NewWriter(b)
w.TryWriteBits(0x08, 4)
w.TryWriteBits(0x07, 3)
w.TryWriteBits(0x05, 3)
w.TryWriteBits(0x15, 6)
if w.TryError != nil {
// Handle error
}
err = w.Close()
// b will hold the bytes: 0x8f and 0x55