mirror of
https://github.com/make-42/xyosc
synced 2025-01-18 10:47:10 +01:00
yes
This commit is contained in:
parent
35f0b32420
commit
145abd9383
13
vendor/github.com/mjibson/go-dsp/LICENSE
generated
vendored
Normal file
13
vendor/github.com/mjibson/go-dsp/LICENSE
generated
vendored
Normal file
@ -0,0 +1,13 @@
|
||||
Copyright (c) 2011 Matt Jibson <matt.jibson@gmail.com>
|
||||
|
||||
Permission to use, copy, modify, and distribute this software for any
|
||||
purpose with or without fee is hereby granted, provided that the above
|
||||
copyright notice and this permission notice appear in all copies.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
96
vendor/github.com/mjibson/go-dsp/dsputils/compare.go
generated
vendored
Normal file
96
vendor/github.com/mjibson/go-dsp/dsputils/compare.go
generated
vendored
Normal file
@ -0,0 +1,96 @@
|
||||
/*
|
||||
* Copyright (c) 2011 Matt Jibson <matt.jibson@gmail.com>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
package dsputils
|
||||
|
||||
import (
|
||||
"math"
|
||||
)
|
||||
|
||||
const (
|
||||
closeFactor = 1e-8
|
||||
)
|
||||
|
||||
// PrettyClose returns true if the slices a and b are very close, else false.
|
||||
func PrettyClose(a, b []float64) bool {
|
||||
if len(a) != len(b) {
|
||||
return false
|
||||
}
|
||||
|
||||
for i, c := range a {
|
||||
if !Float64Equal(c, b[i]) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// PrettyCloseC returns true if the slices a and b are very close, else false.
|
||||
func PrettyCloseC(a, b []complex128) bool {
|
||||
if len(a) != len(b) {
|
||||
return false
|
||||
}
|
||||
|
||||
for i, c := range a {
|
||||
if !ComplexEqual(c, b[i]) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// PrettyClose2 returns true if the matrixes a and b are very close, else false.
|
||||
func PrettyClose2(a, b [][]complex128) bool {
|
||||
if len(a) != len(b) {
|
||||
return false
|
||||
}
|
||||
|
||||
for i, c := range a {
|
||||
if !PrettyCloseC(c, b[i]) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// PrettyClose2F returns true if the matrixes a and b are very close, else false.
|
||||
func PrettyClose2F(a, b [][]float64) bool {
|
||||
if len(a) != len(b) {
|
||||
return false
|
||||
}
|
||||
|
||||
for i, c := range a {
|
||||
if !PrettyClose(c, b[i]) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// ComplexEqual returns true if a and b are very close, else false.
|
||||
func ComplexEqual(a, b complex128) bool {
|
||||
r_a := real(a)
|
||||
r_b := real(b)
|
||||
i_a := imag(a)
|
||||
i_b := imag(b)
|
||||
|
||||
return Float64Equal(r_a, r_b) && Float64Equal(i_a, i_b)
|
||||
}
|
||||
|
||||
// Float64Equal returns true if a and b are very close, else false.
|
||||
func Float64Equal(a, b float64) bool {
|
||||
return math.Abs(a-b) <= closeFactor || math.Abs(1-a/b) <= closeFactor
|
||||
}
|
115
vendor/github.com/mjibson/go-dsp/dsputils/dsputils.go
generated
vendored
Normal file
115
vendor/github.com/mjibson/go-dsp/dsputils/dsputils.go
generated
vendored
Normal file
@ -0,0 +1,115 @@
|
||||
/*
|
||||
* Copyright (c) 2011 Matt Jibson <matt.jibson@gmail.com>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
// Package dsputils provides functions useful in digital signal processing.
|
||||
package dsputils
|
||||
|
||||
import (
|
||||
"math"
|
||||
)
|
||||
|
||||
// ToComplex returns the complex equivalent of the real-valued slice.
|
||||
func ToComplex(x []float64) []complex128 {
|
||||
y := make([]complex128, len(x))
|
||||
for n, v := range x {
|
||||
y[n] = complex(v, 0)
|
||||
}
|
||||
return y
|
||||
}
|
||||
|
||||
// IsPowerOf2 returns true if x is a power of 2, else false.
|
||||
func IsPowerOf2(x int) bool {
|
||||
return x&(x-1) == 0
|
||||
}
|
||||
|
||||
// NextPowerOf2 returns the next power of 2 >= x.
|
||||
func NextPowerOf2(x int) int {
|
||||
if IsPowerOf2(x) {
|
||||
return x
|
||||
}
|
||||
|
||||
return int(math.Pow(2, math.Ceil(math.Log2(float64(x)))))
|
||||
}
|
||||
|
||||
// ZeroPad returns x with zeros appended to the end to the specified length.
|
||||
// If len(x) >= length, x is returned, otherwise a new array is returned.
|
||||
func ZeroPad(x []complex128, length int) []complex128 {
|
||||
if len(x) >= length {
|
||||
return x
|
||||
}
|
||||
|
||||
r := make([]complex128, length)
|
||||
copy(r, x)
|
||||
return r
|
||||
}
|
||||
|
||||
// ZeroPadF returns x with zeros appended to the end to the specified length.
|
||||
// If len(x) >= length, x is returned, otherwise a new array is returned.
|
||||
func ZeroPadF(x []float64, length int) []float64 {
|
||||
if len(x) >= length {
|
||||
return x
|
||||
}
|
||||
|
||||
r := make([]float64, length)
|
||||
copy(r, x)
|
||||
return r
|
||||
}
|
||||
|
||||
// ZeroPad2 returns ZeroPad of x, with the length as the next power of 2 >= len(x).
|
||||
func ZeroPad2(x []complex128) []complex128 {
|
||||
return ZeroPad(x, NextPowerOf2(len(x)))
|
||||
}
|
||||
|
||||
// ToComplex2 returns the complex equivalent of the real-valued matrix.
|
||||
func ToComplex2(x [][]float64) [][]complex128 {
|
||||
y := make([][]complex128, len(x))
|
||||
for n, v := range x {
|
||||
y[n] = ToComplex(v)
|
||||
}
|
||||
return y
|
||||
}
|
||||
|
||||
// Segment returns segs equal-length slices that are segments of x with noverlap% of overlap.
|
||||
// The returned slices are not copies of x, but slices into it.
|
||||
// Trailing entries in x that connot be included in the equal-length segments are discarded.
|
||||
// noverlap is a percentage, thus 0 <= noverlap <= 1, and noverlap = 0.5 is 50% overlap.
|
||||
func Segment(x []complex128, segs int, noverlap float64) [][]complex128 {
|
||||
lx := len(x)
|
||||
|
||||
// determine step, length, and overlap
|
||||
var overlap, length, step, tot int
|
||||
for length = lx; length > 0; length-- {
|
||||
overlap = int(float64(length) * noverlap)
|
||||
tot = segs*(length-overlap) + overlap
|
||||
if tot <= lx {
|
||||
step = length - overlap
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if length == 0 {
|
||||
panic("too many segments")
|
||||
}
|
||||
|
||||
r := make([][]complex128, segs)
|
||||
s := 0
|
||||
for n := range r {
|
||||
r[n] = x[s : s+length]
|
||||
s += step
|
||||
}
|
||||
|
||||
return r
|
||||
}
|
216
vendor/github.com/mjibson/go-dsp/dsputils/matrix.go
generated
vendored
Normal file
216
vendor/github.com/mjibson/go-dsp/dsputils/matrix.go
generated
vendored
Normal file
@ -0,0 +1,216 @@
|
||||
/*
|
||||
* Copyright (c) 2011 Matt Jibson <matt.jibson@gmail.com>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
package dsputils
|
||||
|
||||
// Matrix is a multidimensional matrix of arbitrary size and dimension.
|
||||
// It cannot be resized after creation. Arrays in any axis can be set or fetched.
|
||||
type Matrix struct {
|
||||
list []complex128
|
||||
dims, offsets []int
|
||||
}
|
||||
|
||||
// MakeMatrix returns a new Matrix populated with x having dimensions dims.
|
||||
// For example, to create a 3-dimensional Matrix with 2 components, 3 rows, and 4 columns:
|
||||
// MakeMatrix([]complex128 {
|
||||
// 1, 2, 3, 4,
|
||||
// 5, 6, 7, 8,
|
||||
// 9, 0, 1, 2,
|
||||
//
|
||||
// 3, 4, 5, 6,
|
||||
// 7, 8, 9, 0,
|
||||
// 4, 3, 2, 1},
|
||||
// []int {2, 3, 4})
|
||||
func MakeMatrix(x []complex128, dims []int) *Matrix {
|
||||
length := 1
|
||||
offsets := make([]int, len(dims))
|
||||
|
||||
for i := len(dims) - 1; i >= 0; i-- {
|
||||
if dims[i] < 1 {
|
||||
panic("invalid dimensions")
|
||||
}
|
||||
|
||||
offsets[i] = length
|
||||
length *= dims[i]
|
||||
}
|
||||
|
||||
if len(x) != length {
|
||||
panic("incorrect dimensions")
|
||||
}
|
||||
|
||||
dc := make([]int, len(dims))
|
||||
copy(dc, dims)
|
||||
return &Matrix{x, dc, offsets}
|
||||
}
|
||||
|
||||
// MakeMatrix2 is a helper function to convert a 2-d array to a matrix.
|
||||
func MakeMatrix2(x [][]complex128) *Matrix {
|
||||
dims := []int{len(x), len(x[0])}
|
||||
r := make([]complex128, dims[0]*dims[1])
|
||||
for n, v := range x {
|
||||
if len(v) != dims[1] {
|
||||
panic("ragged array")
|
||||
}
|
||||
|
||||
copy(r[n*dims[1]:(n+1)*dims[1]], v)
|
||||
}
|
||||
|
||||
return MakeMatrix(r, dims)
|
||||
}
|
||||
|
||||
// Copy returns a new copy of m.
|
||||
func (m *Matrix) Copy() *Matrix {
|
||||
r := &Matrix{m.list, m.dims, m.offsets}
|
||||
r.list = make([]complex128, len(m.list))
|
||||
copy(r.list, m.list)
|
||||
return r
|
||||
}
|
||||
|
||||
// MakeEmptyMatrix creates an empty Matrix with given dimensions.
|
||||
func MakeEmptyMatrix(dims []int) *Matrix {
|
||||
x := 1
|
||||
for _, v := range dims {
|
||||
x *= v
|
||||
}
|
||||
|
||||
return MakeMatrix(make([]complex128, x), dims)
|
||||
}
|
||||
|
||||
// offset returns the index in the one-dimensional array
|
||||
func (s *Matrix) offset(dims []int) int {
|
||||
if len(dims) != len(s.dims) {
|
||||
panic("incorrect dimensions")
|
||||
}
|
||||
|
||||
i := 0
|
||||
for n, v := range dims {
|
||||
if v > s.dims[n] {
|
||||
panic("incorrect dimensions")
|
||||
}
|
||||
|
||||
i += v * s.offsets[n]
|
||||
}
|
||||
|
||||
return i
|
||||
}
|
||||
|
||||
func (m *Matrix) indexes(dims []int) []int {
|
||||
i := -1
|
||||
for n, v := range dims {
|
||||
if v == -1 {
|
||||
if i >= 0 {
|
||||
panic("only one dimension index allowed")
|
||||
}
|
||||
|
||||
i = n
|
||||
} else if v >= m.dims[n] {
|
||||
panic("dimension out of bounds")
|
||||
}
|
||||
}
|
||||
|
||||
if i == -1 {
|
||||
panic("must specify one dimension index")
|
||||
}
|
||||
|
||||
x := 0
|
||||
for n, v := range dims {
|
||||
if v >= 0 {
|
||||
x += m.offsets[n] * v
|
||||
}
|
||||
}
|
||||
|
||||
r := make([]int, m.dims[i])
|
||||
for j := range r {
|
||||
r[j] = x + m.offsets[i]*j
|
||||
}
|
||||
|
||||
return r
|
||||
}
|
||||
|
||||
// Dimensions returns the dimension array of the Matrix.
|
||||
func (m *Matrix) Dimensions() []int {
|
||||
r := make([]int, len(m.dims))
|
||||
copy(r, m.dims)
|
||||
return r
|
||||
}
|
||||
|
||||
// Dim returns the array of any given index of the Matrix.
|
||||
// Exactly one value in dims must be -1. This is the array dimension returned.
|
||||
// For example, using the Matrix documented in MakeMatrix:
|
||||
// m.Dim([]int {1, 0, -1}) = []complex128 {3, 4, 5, 6}
|
||||
// m.Dim([]int {0, -1, 2}) = []complex128 {3, 7, 1}
|
||||
// m.Dim([]int {-1, 1, 3}) = []complex128 {8, 0}
|
||||
func (s *Matrix) Dim(dims []int) []complex128 {
|
||||
inds := s.indexes(dims)
|
||||
r := make([]complex128, len(inds))
|
||||
for n, v := range inds {
|
||||
r[n] = s.list[v]
|
||||
}
|
||||
|
||||
return r
|
||||
}
|
||||
|
||||
func (m *Matrix) SetDim(x []complex128, dims []int) {
|
||||
inds := m.indexes(dims)
|
||||
if len(x) != len(inds) {
|
||||
panic("incorrect array length")
|
||||
}
|
||||
|
||||
for n, v := range inds {
|
||||
m.list[v] = x[n]
|
||||
}
|
||||
}
|
||||
|
||||
// Value returns the value at the given index.
|
||||
// m.Value([]int {1, 2, 3, 4}) is equivalent to m[1][2][3][4].
|
||||
func (s *Matrix) Value(dims []int) complex128 {
|
||||
return s.list[s.offset(dims)]
|
||||
}
|
||||
|
||||
// SetValue sets the value at the given index.
|
||||
// m.SetValue(10, []int {1, 2, 3, 4}) is equivalent to m[1][2][3][4] = 10.
|
||||
func (s *Matrix) SetValue(x complex128, dims []int) {
|
||||
s.list[s.offset(dims)] = x
|
||||
}
|
||||
|
||||
// To2D returns the 2-D array equivalent of the Matrix.
|
||||
// Only works on Matrixes of 2 dimensions.
|
||||
func (m *Matrix) To2D() [][]complex128 {
|
||||
if len(m.dims) != 2 {
|
||||
panic("can only convert 2-D Matrixes")
|
||||
}
|
||||
|
||||
r := make([][]complex128, m.dims[0])
|
||||
for i := 0; i < m.dims[0]; i++ {
|
||||
r[i] = make([]complex128, m.dims[1])
|
||||
copy(r[i], m.list[i*m.dims[1]:(i+1)*m.dims[1]])
|
||||
}
|
||||
|
||||
return r
|
||||
}
|
||||
|
||||
// PrettyClose returns true if the Matrixes are very close, else false.
|
||||
// Comparison done using dsputils.PrettyCloseC().
|
||||
func (m *Matrix) PrettyClose(n *Matrix) bool {
|
||||
// todo: use new slice equality comparison
|
||||
for i, v := range m.dims {
|
||||
if v != n.dims[i] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
return PrettyCloseC(m.list, n.list)
|
||||
}
|
94
vendor/github.com/mjibson/go-dsp/fft/bluestein.go
generated
vendored
Normal file
94
vendor/github.com/mjibson/go-dsp/fft/bluestein.go
generated
vendored
Normal file
@ -0,0 +1,94 @@
|
||||
/*
|
||||
* Copyright (c) 2011 Matt Jibson <matt.jibson@gmail.com>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
package fft
|
||||
|
||||
import (
|
||||
"math"
|
||||
"sync"
|
||||
|
||||
"github.com/mjibson/go-dsp/dsputils"
|
||||
)
|
||||
|
||||
var (
|
||||
bluesteinLock sync.RWMutex
|
||||
bluesteinFactors = map[int][]complex128{}
|
||||
bluesteinInvFactors = map[int][]complex128{}
|
||||
)
|
||||
|
||||
func getBluesteinFactors(input_len int) ([]complex128, []complex128) {
|
||||
bluesteinLock.RLock()
|
||||
|
||||
if hasBluesteinFactors(input_len) {
|
||||
defer bluesteinLock.RUnlock()
|
||||
return bluesteinFactors[input_len], bluesteinInvFactors[input_len]
|
||||
}
|
||||
|
||||
bluesteinLock.RUnlock()
|
||||
bluesteinLock.Lock()
|
||||
defer bluesteinLock.Unlock()
|
||||
|
||||
if !hasBluesteinFactors(input_len) {
|
||||
bluesteinFactors[input_len] = make([]complex128, input_len)
|
||||
bluesteinInvFactors[input_len] = make([]complex128, input_len)
|
||||
|
||||
var sin, cos float64
|
||||
for i := 0; i < input_len; i++ {
|
||||
if i == 0 {
|
||||
sin, cos = 0, 1
|
||||
} else {
|
||||
sin, cos = math.Sincos(math.Pi / float64(input_len) * float64(i*i))
|
||||
}
|
||||
bluesteinFactors[input_len][i] = complex(cos, sin)
|
||||
bluesteinInvFactors[input_len][i] = complex(cos, -sin)
|
||||
}
|
||||
}
|
||||
|
||||
return bluesteinFactors[input_len], bluesteinInvFactors[input_len]
|
||||
}
|
||||
|
||||
func hasBluesteinFactors(idx int) bool {
|
||||
return bluesteinFactors[idx] != nil
|
||||
}
|
||||
|
||||
// bluesteinFFT returns the FFT calculated using the Bluestein algorithm.
|
||||
func bluesteinFFT(x []complex128) []complex128 {
|
||||
lx := len(x)
|
||||
a := dsputils.ZeroPad(x, dsputils.NextPowerOf2(lx*2-1))
|
||||
la := len(a)
|
||||
factors, invFactors := getBluesteinFactors(lx)
|
||||
|
||||
for n, v := range x {
|
||||
a[n] = v * invFactors[n]
|
||||
}
|
||||
|
||||
b := make([]complex128, la)
|
||||
for i := 0; i < lx; i++ {
|
||||
b[i] = factors[i]
|
||||
|
||||
if i != 0 {
|
||||
b[la-i] = factors[i]
|
||||
}
|
||||
}
|
||||
|
||||
r := Convolve(a, b)
|
||||
|
||||
for i := 0; i < lx; i++ {
|
||||
r[i] *= invFactors[i]
|
||||
}
|
||||
|
||||
return r[:lx]
|
||||
}
|
224
vendor/github.com/mjibson/go-dsp/fft/fft.go
generated
vendored
Normal file
224
vendor/github.com/mjibson/go-dsp/fft/fft.go
generated
vendored
Normal file
@ -0,0 +1,224 @@
|
||||
/*
|
||||
* Copyright (c) 2011 Matt Jibson <matt.jibson@gmail.com>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
// Package fft provides forward and inverse fast Fourier transform functions.
|
||||
package fft
|
||||
|
||||
import (
|
||||
"github.com/mjibson/go-dsp/dsputils"
|
||||
)
|
||||
|
||||
// FFTReal returns the forward FFT of the real-valued slice.
|
||||
func FFTReal(x []float64) []complex128 {
|
||||
return FFT(dsputils.ToComplex(x))
|
||||
}
|
||||
|
||||
// IFFTReal returns the inverse FFT of the real-valued slice.
|
||||
func IFFTReal(x []float64) []complex128 {
|
||||
return IFFT(dsputils.ToComplex(x))
|
||||
}
|
||||
|
||||
// IFFT returns the inverse FFT of the complex-valued slice.
|
||||
func IFFT(x []complex128) []complex128 {
|
||||
lx := len(x)
|
||||
r := make([]complex128, lx)
|
||||
|
||||
// Reverse inputs, which is calculated with modulo N, hence x[0] as an outlier
|
||||
r[0] = x[0]
|
||||
for i := 1; i < lx; i++ {
|
||||
r[i] = x[lx-i]
|
||||
}
|
||||
|
||||
r = FFT(r)
|
||||
|
||||
N := complex(float64(lx), 0)
|
||||
for n := range r {
|
||||
r[n] /= N
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
// Convolve returns the convolution of x ∗ y.
|
||||
func Convolve(x, y []complex128) []complex128 {
|
||||
if len(x) != len(y) {
|
||||
panic("arrays not of equal size")
|
||||
}
|
||||
|
||||
fft_x := FFT(x)
|
||||
fft_y := FFT(y)
|
||||
|
||||
r := make([]complex128, len(x))
|
||||
for i := 0; i < len(r); i++ {
|
||||
r[i] = fft_x[i] * fft_y[i]
|
||||
}
|
||||
|
||||
return IFFT(r)
|
||||
}
|
||||
|
||||
// FFT returns the forward FFT of the complex-valued slice.
|
||||
func FFT(x []complex128) []complex128 {
|
||||
lx := len(x)
|
||||
|
||||
// todo: non-hack handling length <= 1 cases
|
||||
if lx <= 1 {
|
||||
r := make([]complex128, lx)
|
||||
copy(r, x)
|
||||
return r
|
||||
}
|
||||
|
||||
if dsputils.IsPowerOf2(lx) {
|
||||
return radix2FFT(x)
|
||||
}
|
||||
|
||||
return bluesteinFFT(x)
|
||||
}
|
||||
|
||||
var (
|
||||
worker_pool_size = 0
|
||||
)
|
||||
|
||||
// SetWorkerPoolSize sets the number of workers during FFT computation on multicore systems.
|
||||
// If n is 0 (the default), then GOMAXPROCS workers will be created.
|
||||
func SetWorkerPoolSize(n int) {
|
||||
if n < 0 {
|
||||
n = 0
|
||||
}
|
||||
|
||||
worker_pool_size = n
|
||||
}
|
||||
|
||||
// FFT2Real returns the 2-dimensional, forward FFT of the real-valued matrix.
|
||||
func FFT2Real(x [][]float64) [][]complex128 {
|
||||
return FFT2(dsputils.ToComplex2(x))
|
||||
}
|
||||
|
||||
// FFT2 returns the 2-dimensional, forward FFT of the complex-valued matrix.
|
||||
func FFT2(x [][]complex128) [][]complex128 {
|
||||
return computeFFT2(x, FFT)
|
||||
}
|
||||
|
||||
// IFFT2Real returns the 2-dimensional, inverse FFT of the real-valued matrix.
|
||||
func IFFT2Real(x [][]float64) [][]complex128 {
|
||||
return IFFT2(dsputils.ToComplex2(x))
|
||||
}
|
||||
|
||||
// IFFT2 returns the 2-dimensional, inverse FFT of the complex-valued matrix.
|
||||
func IFFT2(x [][]complex128) [][]complex128 {
|
||||
return computeFFT2(x, IFFT)
|
||||
}
|
||||
|
||||
func computeFFT2(x [][]complex128, fftFunc func([]complex128) []complex128) [][]complex128 {
|
||||
rows := len(x)
|
||||
if rows == 0 {
|
||||
panic("empty input array")
|
||||
}
|
||||
|
||||
cols := len(x[0])
|
||||
r := make([][]complex128, rows)
|
||||
for i := 0; i < rows; i++ {
|
||||
if len(x[i]) != cols {
|
||||
panic("ragged input array")
|
||||
}
|
||||
r[i] = make([]complex128, cols)
|
||||
}
|
||||
|
||||
for i := 0; i < cols; i++ {
|
||||
t := make([]complex128, rows)
|
||||
for j := 0; j < rows; j++ {
|
||||
t[j] = x[j][i]
|
||||
}
|
||||
|
||||
for n, v := range fftFunc(t) {
|
||||
r[n][i] = v
|
||||
}
|
||||
}
|
||||
|
||||
for n, v := range r {
|
||||
r[n] = fftFunc(v)
|
||||
}
|
||||
|
||||
return r
|
||||
}
|
||||
|
||||
// FFTN returns the forward FFT of the matrix m, computed in all N dimensions.
|
||||
func FFTN(m *dsputils.Matrix) *dsputils.Matrix {
|
||||
return computeFFTN(m, FFT)
|
||||
}
|
||||
|
||||
// IFFTN returns the forward FFT of the matrix m, computed in all N dimensions.
|
||||
func IFFTN(m *dsputils.Matrix) *dsputils.Matrix {
|
||||
return computeFFTN(m, IFFT)
|
||||
}
|
||||
|
||||
func computeFFTN(m *dsputils.Matrix, fftFunc func([]complex128) []complex128) *dsputils.Matrix {
|
||||
dims := m.Dimensions()
|
||||
t := m.Copy()
|
||||
r := dsputils.MakeEmptyMatrix(dims)
|
||||
|
||||
for n := range dims {
|
||||
dims[n] -= 1
|
||||
}
|
||||
|
||||
for n := range dims {
|
||||
d := make([]int, len(dims))
|
||||
copy(d, dims)
|
||||
d[n] = -1
|
||||
|
||||
for {
|
||||
r.SetDim(fftFunc(t.Dim(d)), d)
|
||||
|
||||
if !decrDim(d, dims) {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
r, t = t, r
|
||||
}
|
||||
|
||||
return t
|
||||
}
|
||||
|
||||
// decrDim decrements an element of x by 1, skipping all -1s, and wrapping up to d.
|
||||
// If a value is 0, it will be reset to its correspending value in d, and will carry one from the next non -1 value to the right.
|
||||
// Returns true if decremented, else false.
|
||||
func decrDim(x, d []int) bool {
|
||||
for n, v := range x {
|
||||
if v == -1 {
|
||||
continue
|
||||
} else if v == 0 {
|
||||
i := n
|
||||
// find the next element to decrement
|
||||
for ; i < len(x); i++ {
|
||||
if x[i] == -1 {
|
||||
continue
|
||||
} else if x[i] == 0 {
|
||||
x[i] = d[i]
|
||||
} else {
|
||||
x[i] -= 1
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// no decrement
|
||||
return false
|
||||
} else {
|
||||
x[n] -= 1
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
199
vendor/github.com/mjibson/go-dsp/fft/radix2.go
generated
vendored
Normal file
199
vendor/github.com/mjibson/go-dsp/fft/radix2.go
generated
vendored
Normal file
@ -0,0 +1,199 @@
|
||||
/*
|
||||
* Copyright (c) 2011 Matt Jibson <matt.jibson@gmail.com>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
package fft
|
||||
|
||||
import (
|
||||
"math"
|
||||
"runtime"
|
||||
"sync"
|
||||
)
|
||||
|
||||
var (
|
||||
radix2Lock sync.RWMutex
|
||||
radix2Factors = map[int][]complex128{
|
||||
4: {complex(1, 0), complex(0, -1), complex(-1, 0), complex(0, 1)},
|
||||
}
|
||||
)
|
||||
|
||||
// EnsureRadix2Factors ensures that all radix 2 factors are computed for inputs
|
||||
// of length input_len. This is used to precompute needed factors for known
|
||||
// sizes. Generally should only be used for benchmarks.
|
||||
func EnsureRadix2Factors(input_len int) {
|
||||
getRadix2Factors(input_len)
|
||||
}
|
||||
|
||||
func getRadix2Factors(input_len int) []complex128 {
|
||||
radix2Lock.RLock()
|
||||
|
||||
if hasRadix2Factors(input_len) {
|
||||
defer radix2Lock.RUnlock()
|
||||
return radix2Factors[input_len]
|
||||
}
|
||||
|
||||
radix2Lock.RUnlock()
|
||||
radix2Lock.Lock()
|
||||
defer radix2Lock.Unlock()
|
||||
|
||||
if !hasRadix2Factors(input_len) {
|
||||
for i, p := 8, 4; i <= input_len; i, p = i<<1, i {
|
||||
if radix2Factors[i] == nil {
|
||||
radix2Factors[i] = make([]complex128, i)
|
||||
|
||||
for n, j := 0, 0; n < i; n, j = n+2, j+1 {
|
||||
radix2Factors[i][n] = radix2Factors[p][j]
|
||||
}
|
||||
|
||||
for n := 1; n < i; n += 2 {
|
||||
sin, cos := math.Sincos(-2 * math.Pi / float64(i) * float64(n))
|
||||
radix2Factors[i][n] = complex(cos, sin)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return radix2Factors[input_len]
|
||||
}
|
||||
|
||||
func hasRadix2Factors(idx int) bool {
|
||||
return radix2Factors[idx] != nil
|
||||
}
|
||||
|
||||
type fft_work struct {
|
||||
start, end int
|
||||
}
|
||||
|
||||
// radix2FFT returns the FFT calculated using the radix-2 DIT Cooley-Tukey algorithm.
|
||||
func radix2FFT(x []complex128) []complex128 {
|
||||
lx := len(x)
|
||||
factors := getRadix2Factors(lx)
|
||||
|
||||
t := make([]complex128, lx) // temp
|
||||
r := reorderData(x)
|
||||
|
||||
var blocks, stage, s_2 int
|
||||
|
||||
jobs := make(chan *fft_work, lx)
|
||||
wg := sync.WaitGroup{}
|
||||
|
||||
num_workers := worker_pool_size
|
||||
if (num_workers) == 0 {
|
||||
num_workers = runtime.GOMAXPROCS(0)
|
||||
}
|
||||
|
||||
idx_diff := lx / num_workers
|
||||
if idx_diff < 2 {
|
||||
idx_diff = 2
|
||||
}
|
||||
|
||||
worker := func() {
|
||||
for work := range jobs {
|
||||
for nb := work.start; nb < work.end; nb += stage {
|
||||
if stage != 2 {
|
||||
for j := 0; j < s_2; j++ {
|
||||
idx := j + nb
|
||||
idx2 := idx + s_2
|
||||
ridx := r[idx]
|
||||
w_n := r[idx2] * factors[blocks*j]
|
||||
t[idx] = ridx + w_n
|
||||
t[idx2] = ridx - w_n
|
||||
}
|
||||
} else {
|
||||
n1 := nb + 1
|
||||
rn := r[nb]
|
||||
rn1 := r[n1]
|
||||
t[nb] = rn + rn1
|
||||
t[n1] = rn - rn1
|
||||
}
|
||||
}
|
||||
wg.Done()
|
||||
}
|
||||
}
|
||||
|
||||
for i := 0; i < num_workers; i++ {
|
||||
go worker()
|
||||
}
|
||||
defer close(jobs)
|
||||
|
||||
for stage = 2; stage <= lx; stage <<= 1 {
|
||||
blocks = lx / stage
|
||||
s_2 = stage / 2
|
||||
|
||||
for start, end := 0, stage; ; {
|
||||
if end-start >= idx_diff || end == lx {
|
||||
wg.Add(1)
|
||||
jobs <- &fft_work{start, end}
|
||||
|
||||
if end == lx {
|
||||
break
|
||||
}
|
||||
|
||||
start = end
|
||||
}
|
||||
|
||||
end += stage
|
||||
}
|
||||
wg.Wait()
|
||||
r, t = t, r
|
||||
}
|
||||
|
||||
return r
|
||||
}
|
||||
|
||||
// reorderData returns a copy of x reordered for the DFT.
|
||||
func reorderData(x []complex128) []complex128 {
|
||||
lx := uint(len(x))
|
||||
r := make([]complex128, lx)
|
||||
s := log2(lx)
|
||||
|
||||
var n uint
|
||||
for ; n < lx; n++ {
|
||||
r[reverseBits(n, s)] = x[n]
|
||||
}
|
||||
|
||||
return r
|
||||
}
|
||||
|
||||
// log2 returns the log base 2 of v
|
||||
// from: http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious
|
||||
func log2(v uint) uint {
|
||||
var r uint
|
||||
|
||||
for v >>= 1; v != 0; v >>= 1 {
|
||||
r++
|
||||
}
|
||||
|
||||
return r
|
||||
}
|
||||
|
||||
// reverseBits returns the first s bits of v in reverse order
|
||||
// from: http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious
|
||||
func reverseBits(v, s uint) uint {
|
||||
var r uint
|
||||
|
||||
// Since we aren't reversing all the bits in v (just the first s bits),
|
||||
// we only need the first bit of v instead of a full copy.
|
||||
r = v & 1
|
||||
s--
|
||||
|
||||
for v >>= 1; v != 0; v >>= 1 {
|
||||
r <<= 1
|
||||
r |= v & 1
|
||||
s--
|
||||
}
|
||||
|
||||
return r << s
|
||||
}
|
Loading…
Reference in New Issue
Block a user