might be more efficient

This commit is contained in:
Louis Dalibard 2025-01-16 22:56:38 +01:00
parent 5d3a570c29
commit ff40ee8f63
16 changed files with 1203 additions and 334 deletions

4
go.mod
View File

@ -3,10 +3,10 @@ module xyosc
go 1.23.2
require (
github.com/MicahParks/peakdetect v0.1.2
github.com/chewxy/math32 v1.11.1
github.com/fsnotify/fsnotify v1.8.0
github.com/gen2brain/malgo v0.11.23
github.com/goccmack/godsp v0.1.1
github.com/godbus/dbus v4.1.0+incompatible
github.com/hajimehoshi/ebiten/v2 v2.8.6
github.com/kirsle/configdir v0.0.0-20170128060238-e45d2f54772f
@ -21,8 +21,10 @@ require (
github.com/ebitengine/hideconsole v1.0.0 // indirect
github.com/ebitengine/purego v0.8.2 // indirect
github.com/go-text/typesetting v0.2.1 // indirect
github.com/goccmack/goutil v0.4.0 // indirect
github.com/godbus/dbus/v5 v5.1.0 // indirect
github.com/jezek/xgb v1.1.1 // indirect
github.com/mjibson/go-dsp v0.0.0-20180508042940-11479a337f12 // indirect
golang.org/x/image v0.23.0 // indirect
golang.org/x/sync v0.10.0 // indirect
golang.org/x/sys v0.29.0 // indirect

27
go.sum
View File

@ -1,5 +1,4 @@
github.com/MicahParks/peakdetect v0.1.2 h1:DYQXgBzfl/kkuTKErM/4/2iSkk63okzTka6haTQFK5Y=
github.com/MicahParks/peakdetect v0.1.2/go.mod h1:78d4YnCFxrVbu1Calxc3LIOqN/xtcr7a8lmSwPRylts=
github.com/ajstarks/svgo v0.0.0-20180226025133-644b8db467af/go.mod h1:K08gAheRH3/J6wwsYMMT4xOr94bZjxIelGM0+d/wbFw=
github.com/chewxy/math32 v1.11.1 h1:b7PGHlp8KjylDoU8RrcEsRuGZhJuz8haxnKfuMMRqy8=
github.com/chewxy/math32 v1.11.1/go.mod h1:dOB2rcuFrCn6UHrze36WSLVPKtzPMRAQvBvUwkSsLqs=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
@ -10,30 +9,41 @@ github.com/ebitengine/hideconsole v1.0.0 h1:5J4U0kXF+pv/DhiXt5/lTz0eO5ogJ1iXb8Yj
github.com/ebitengine/hideconsole v1.0.0/go.mod h1:hTTBTvVYWKBuxPr7peweneWdkUwEuHuB3C1R/ielR1A=
github.com/ebitengine/purego v0.8.2 h1:jPPGWs2sZ1UgOSgD2bClL0MJIqu58nOmIcBuXr62z1I=
github.com/ebitengine/purego v0.8.2/go.mod h1:iIjxzd6CiRiOG0UyXP+V1+jWqUXVjPKLAI0mRfJZTmQ=
github.com/fogleman/gg v1.2.1-0.20190220221249-0403632d5b90/go.mod h1:R/bRT+9gY/C5z7JzPU0zXsXHKM4/ayA+zqcVNZzPa1k=
github.com/fsnotify/fsnotify v1.8.0 h1:dAwr6QBTBZIkG8roQaJjGof0pp0EeF+tNV7YBP3F/8M=
github.com/fsnotify/fsnotify v1.8.0/go.mod h1:8jBTzvmWwFyi3Pb8djgCCO5IBqzKJ/Jwo8TRcHyHii0=
github.com/gen2brain/malgo v0.11.23 h1:3/VAI8DP9/Wyx1CUDNlUQJVdWUvGErhjHDqYcHVk9ME=
github.com/gen2brain/malgo v0.11.23/go.mod h1:f9TtuN7DVrXMiV/yIceMeWpvanyVzJQMlBecJFVMxww=
github.com/go-audio/audio v1.0.0/go.mod h1:6uAu0+H2lHkwdGsAY+j2wHPNPpPoeg5AaEFh9FlA+Zs=
github.com/go-text/typesetting v0.2.1 h1:x0jMOGyO3d1qFAPI0j4GSsh7M0Q3Ypjzr4+CEVg82V8=
github.com/go-text/typesetting v0.2.1/go.mod h1:mTOxEwasOFpAMBjEQDhdWRckoLLeI/+qrQeBCTGEt6M=
github.com/go-text/typesetting-utils v0.0.0-20241103174707-87a29e9e6066 h1:qCuYC+94v2xrb1PoS4NIDe7DGYtLnU2wWiQe9a1B1c0=
github.com/go-text/typesetting-utils v0.0.0-20241103174707-87a29e9e6066/go.mod h1:DDxDdQEnB70R8owOx3LVpEFvpMK9eeH1o2r0yZhFI9o=
github.com/goccmack/godsp v0.1.1 h1:NLPDr47wwVdDtQjSca8FSSpcAQKUKbmQq5ligBTZPwc=
github.com/goccmack/godsp v0.1.1/go.mod h1:SxJmlwp2eWh5NYP0Oo/ptCd/oqkj1lehn6ApcXtPb4U=
github.com/goccmack/goutil v0.4.0 h1:or+SequGBcQp7Rf5q719HlOxtEGueaXEenDbc3pANgk=
github.com/goccmack/goutil v0.4.0/go.mod h1:dPBoKv07AeI2DGYE3ECrSLOLpGaBIBGCUCGKHclOPyU=
github.com/godbus/dbus v4.1.0+incompatible h1:WqqLRTsQic3apZUK9qC5sGNfXthmPXzUZ7nQPrNITa4=
github.com/godbus/dbus v4.1.0+incompatible/go.mod h1:/YcGZj5zSblfDWMMoOzV4fas9FZnQYTkDnsGvmh2Grw=
github.com/godbus/dbus/v5 v5.1.0 h1:4KLkAxT3aOY8Li4FRJe/KvhoNFFxo0m6fNuFUO8QJUk=
github.com/godbus/dbus/v5 v5.1.0/go.mod h1:xhWf0FNVPg57R7Z0UbKHbJfkEywrmjJnf7w5xrFpKfA=
github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0/go.mod h1:E/TSTwGwJL78qG/PmXZO1EjYhfJinVAhrmmHX6Z8B9k=
github.com/golang/geo v0.0.0-20190916061304-5b978397cfec/go.mod h1:QZ0nwyI2jOfgRAoBvP+ab5aRr7c9x7lhGEJrKvBwjWI=
github.com/hajimehoshi/bitmapfont/v3 v3.2.0 h1:0DISQM/rseKIJhdF29AkhvdzIULqNIIlXAGWit4ez1Q=
github.com/hajimehoshi/bitmapfont/v3 v3.2.0/go.mod h1:8gLqGatKVu0pwcNCJguW3Igg9WQqVXF0zg/RvrGQWyg=
github.com/hajimehoshi/ebiten/v2 v2.8.6 h1:Dkd/sYI0TYyZRCE7GVxV59XC+WCi2BbGAbIBjXeVC1U=
github.com/hajimehoshi/ebiten/v2 v2.8.6/go.mod h1:cCQ3np7rdmaJa1ZnvslraVlpxNb3wCjEnAP1LHNyXNA=
github.com/jezek/xgb v1.1.1 h1:bE/r8ZZtSv7l9gk6nU0mYx51aXrvnyb44892TwSaqS4=
github.com/jezek/xgb v1.1.1/go.mod h1:nrhwO0FX/enq75I7Y7G8iN1ubpSGZEiA3v9e9GyRFlk=
github.com/jung-kurt/gofpdf v1.0.3-0.20190309125859-24315acbbda5/go.mod h1:7Id9E/uU8ce6rXgefFLlgrJj/GYY22cpxn+r32jIOes=
github.com/kirsle/configdir v0.0.0-20170128060238-e45d2f54772f h1:dKccXx7xA56UNqOcFIbuqFjAWPVtP688j5QMgmo6OHU=
github.com/kirsle/configdir v0.0.0-20170128060238-e45d2f54772f/go.mod h1:4rEELDSfUAlBSyUjPG0JnaNGjf13JySHFeRdD/3dLP0=
github.com/kr/text v0.2.0 h1:5Nx0Ya0ZqY2ygV366QzturHI13Jq95ApcVaJBhpS+AY=
github.com/kr/text v0.2.0/go.mod h1:eLer722TekiGuMkidMxC/pM04lWEeraHUUmBw8l2grE=
github.com/leberKleber/go-mpris v1.1.0 h1:bHAnmUjVoxAs4uMHH9lfQ8bOm284UWtI7JhLvkiF7O8=
github.com/leberKleber/go-mpris v1.1.0/go.mod h1:OwKywFZwFGC0p/8xBUTUXMIFZy0Rq/7C6EayfeASTA0=
github.com/mjibson/go-dsp v0.0.0-20180508042940-11479a337f12 h1:dd7vnTDfjtwCETZDrRe+GPYNLA1jBtbZeyfyE8eZCyk=
github.com/mjibson/go-dsp v0.0.0-20180508042940-11479a337f12/go.mod h1:i/KKcxEWEO8Yyl11DYafRPKOPVYTrhxiTRigjtEEXZU=
github.com/niemeyer/pretty v0.0.0-20200227124842-a10e7caefd8e h1:fD57ERR4JtEqsWbfPhv4DMiApHyliiK5xCTNVSPiaAs=
github.com/niemeyer/pretty v0.0.0-20200227124842-a10e7caefd8e/go.mod h1:zD1mROLANZcx1PVRCS0qkT7pwLkGfwJo4zjcN/Tysno=
github.com/pierrec/lz4/v4 v4.1.21 h1:yOVMLb6qSIDP67pl/5F7RepeKYu/VmTyEXvuMI5d9mQ=
@ -44,8 +54,14 @@ github.com/smallnest/ringbuffer v0.0.0-20241129171057-356c688ba81d h1:Kpy9DIOvTw
github.com/smallnest/ringbuffer v0.0.0-20241129171057-356c688ba81d/go.mod h1:tAG61zBM1DYRaGIPloumExGvScf08oHuo0kFoOqdbT0=
github.com/stretchr/testify v1.8.0 h1:pSgiaMZlXftHpm5L7V1+rVB+AZJydKsMxsQBIJw4PKk=
github.com/stretchr/testify v1.8.0/go.mod h1:yNjHg4UonilssWZ8iaSj1OCr/vHnekPRkoO+kdMU+MU=
github.com/youpy/go-riff v0.0.0-20131220112943-557d78c11efb/go.mod h1:83nxdDV4Z9RzrTut9losK7ve4hUnxUR8ASSz4BsKXwQ=
github.com/youpy/go-wav v0.0.0-20160223082350-b63a9887d320/go.mod h1:Zf+Ju+8Ofy5zx/YWWArfcGnl5FAsWumLq/uHeRGgL60=
github.com/ztrue/tracerr v0.4.0 h1:vT5PFxwIGs7rCg9ZgJ/y0NmOpJkPCPFK8x0vVIYzd04=
github.com/ztrue/tracerr v0.4.0/go.mod h1:PaFfYlas0DfmXNpo7Eay4MFhZUONqvXM+T2HyGPpngk=
golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190125153040-c74c464bbbf2/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs=
golang.org/x/image v0.23.0 h1:HseQ7c2OpPKTPVzNjG5fwJsOTCiiwS4QdsYi5XU6H68=
golang.org/x/image v0.23.0/go.mod h1:wJJBTdLfCCf3tiHa1fNxpZmUI4mmoZvwMCPP0ddoNKY=
golang.org/x/sync v0.10.0 h1:3NQrjDixjgGwUOCaF8w2+VYHv0Ve/vGYSbdkTa98gmQ=
@ -54,6 +70,12 @@ golang.org/x/sys v0.29.0 h1:TPYlXGxvx1MGTn2GiZDhnjPA9wZzZeGKHHmKhHYvgaU=
golang.org/x/sys v0.29.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
golang.org/x/text v0.21.0 h1:zyQAAkrwaneQ066sspRyJaG9VNi/YJ1NfzcGB3hZ/qo=
golang.org/x/text v0.21.0/go.mod h1:4IBbMaMmOPCJ8SecivzSH54+73PCFmPWxNTLm+vZkEQ=
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20190206041539-40960b6deb8e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
gonum.org/v1/gonum v0.0.0-20180816165407-929014505bf4/go.mod h1:Y+Yx5eoAFn32cQvJDxZx5Dpnq+c3wtXuadVZAcxbbBo=
gonum.org/v1/gonum v0.6.2/go.mod h1:9mxDZsDKxgMAuccQkewq682L+0eCu4dCN2yonUJTCLU=
gonum.org/v1/netlib v0.0.0-20190313105609-8cb42192e0e0/go.mod h1:wa6Ws7BG/ESfp6dHfk7C6KdzKA7wR7u/rKwOGE66zvw=
gonum.org/v1/plot v0.0.0-20190515093506-e2840ee46a6b/go.mod h1:Wt8AAjI+ypCyYX3nZBvf6cAIx93T+c/OS2HFAYskSZc=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/check.v1 v1.0.0-20200227125254-8fa46927fb4f h1:BLraFXnmrev5lT+xlilqcH8XK9/i0At2xKjWk4p6zsU=
gopkg.in/check.v1 v1.0.0-20200227125254-8fa46927fb4f/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
@ -61,3 +83,4 @@ gopkg.in/yaml.v2 v2.4.0 h1:D8xgwECY7CYvx+Y2n4sBz93Jn9JRvxdiyyo8CTfuKaY=
gopkg.in/yaml.v2 v2.4.0/go.mod h1:RDklbk79AGWmwhnvt/jBztapEOGDOx6ZbXqjP6csGnQ=
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
gopkg.in/yaml.v3 v3.0.1/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
rsc.io/pdf v0.1.1/go.mod h1:n8OzWcQ6Sp37PL01nO98y4iUCRdTGarVfzxY20ICaU4=

View File

@ -1,142 +0,0 @@
[![Go Reference](https://pkg.go.dev/badge/github.com/MicahParks/peakdetect.svg)](https://pkg.go.dev/github.com/MicahParks/peakdetect) [![Go Report Card](https://goreportcard.com/badge/github.com/MicahParks/peakdetect)](https://goreportcard.com/report/github.com/MicahParks/peakdetect)
# peakdetect
Detect peaks in realtime timeseries data using z-scores. This is a Golang implementation for the algorithm described
by [this StackOverflow answer](https://stackoverflow.com/a/22640362/14797322).
Unlike some implementations, a goal is to minimize the memory footprint and allow for the processing of new data points
without reprocessing old ones.
```go
import "github.com/MicahParks/peakdetect"
```
# Configuration
`Lag` determines how much your data will be smoothed and how adaptive the algorithm is to change in the long-term
average of the data. The more stationary your data is, the more lags you should include (this should improve the
robustness of the algorithm). If your data contains time-varying trends, you should consider how quickly you want the
algorithm to adapt to these trends. I.e., if you put lag at 10, it takes 10 'periods' before the algorithm's threshold
is adjusted to any systematic changes in the long-term average. So choose the lag parameter based on the trending
behavior of your data and how adaptive you want the algorithm to be.
`Influence` determines the influence of signals on the algorithm's detection threshold. If put at 0, signals have no
influence on the threshold, such that future signals are detected based on a threshold that is calculated with a mean
and standard deviation that is not influenced by past signals. If put at 0.5, signals have half the influence of normal
data points. Another way to think about this is that if you put the influence at 0, you implicitly assume stationary (
i.e. no matter how many signals there are, you always expect the time series to return to the same average over the long
term). If this is not the case, you should put the influence parameter somewhere between 0 and 1, depending on the
extent to which signals can systematically influence the time-varying trend of the data. E.g., if signals lead to a
structural break of the long-term average of the time series, the influence parameter should be put high (close to 1) so
the threshold can react to structural breaks quickly
`Threshold` is the number of standard deviations from the moving mean above which the algorithm will classify a new
datapoint as being a signal. For example, if a new datapoint is 4.0 standard deviations above the moving mean and the
threshold parameter is set as 3.5, the algorithm will identify the datapoint as a signal. This parameter should be set
based on how many signals you expect. For example, if your data is normally distributed, a threshold (or: z-score) of
3.5 corresponds to a signaling probability of 0.00047 (from this table), which implies that you expect a signal once
every 2128 datapoints (1/0.00047). The threshold therefore directly influences how sensitive the algorithm is and
thereby also determines how often the algorithm signals. Examine your own data and choose a sensible threshold that
makes the algorithm signal when you want it to (some trial-and-error might be needed here to get to a good threshold for
your purpose)
# Usage
```go
package main
import (
"fmt"
"log"
"github.com/MicahParks/peakdetect"
)
// This example is the equivalent of the R example from the algorithm's author.
// https://stackoverflow.com/a/54507329/14797322
func main() {
data := []float64{1, 1, 1.1, 1, 0.9, 1, 1, 1.1, 1, 0.9, 1, 1.1, 1, 1, 0.9, 1, 1, 1.1, 1, 1, 1, 1, 1.1, 0.9, 1, 1.1, 1, 1, 0.9, 1, 1.1, 1, 1, 1.1, 1, 0.8, 0.9, 1, 1.2, 0.9, 1, 1, 1.1, 1.2, 1, 1.5, 1, 3, 2, 5, 3, 2, 1, 1, 1, 0.9, 1, 1, 3, 2.6, 4, 3, 3.2, 2, 1, 1, 0.8, 4, 4, 2, 2.5, 1, 1, 1}
// Algorithm configuration from example.
const (
lag = 30
threshold = 5
influence = 0
)
// Create then initialize the peak detector.
detector := peakdetect.NewPeakDetector()
err := detector.Initialize(influence, threshold, data[:lag]) // The length of the initial values is the lag.
if err != nil {
log.Fatalf("Failed to initialize peak detector.\nError: %s", err)
}
// Start processing new data points and determine what signal, if any they produce.
//
// This method, .Next(), is best for when data are being processed in a stream, but this simply iterates over a
// slice.
nextDataPoints := data[lag:]
for i, newPoint := range nextDataPoints {
signal := detector.Next(newPoint)
var signalType string
switch signal {
case peakdetect.SignalNegative:
signalType = "negative"
case peakdetect.SignalNeutral:
signalType = "neutral"
case peakdetect.SignalPositive:
signalType = "positive"
}
println(fmt.Sprintf("Data point at index %d has the signal: %s", i+lag, signalType))
}
// This method, .NextBatch(), is a helper function for processing many data points at once. It's returned slice
// should produce the same signal outputs as the loop above.
signals := detector.NextBatch(nextDataPoints)
println(fmt.Sprintf("1:1 ratio of batch inputs to signal outputs: %t", len(signals) == len(nextDataPoints)))
}
```
# Testing
```
$ go test -cover -race
PASS
coverage: 100.0% of statements
ok github.com/MicahParks/peakdetect 0.019s
```
# Performance
To further improve performance, this algorithm uses Welford's algorithm on initialization
and an adaptation of [this StackOverflow answer](https://stackoverflow.com/a/14638138/14797322) to calculate the mean
and population standard deviation for the lag period (sliding window). This appears to improve performance by more than
a factor of 10!
`v0.0.4`
```
goos: linux
goarch: amd64
pkg: github.com/MicahParks/peakdetect
cpu: AMD Ryzen 9 7950X 16-Core Processor
BenchmarkPeakDetector_NextBatch-32 1000000000 0.0000221 ns/op
PASS
ok github.com/MicahParks/peakdetect 0.003s
```
`v0.1.0`
```
goos: linux
goarch: amd64
pkg: github.com/MicahParks/peakdetect
cpu: AMD Ryzen 9 7950X 16-Core Processor
BenchmarkPeakDetector_NextBatch-32 1000000000 0.0000011 ns/op
PASS
ok github.com/MicahParks/peakdetect 0.003s
```
# References
Brakel, J.P.G. van (2014). "Robust peak detection algorithm using z-scores". Stack Overflow. Available
at: https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/22640362#22640362
(version: 2020-11-08).
* [StackOverflow: Peak detection in realtime timeseries data](https://stackoverflow.com/a/22640362/14797322).
* [StackOverflow: sliding window for online algorithm to calculate mean and standard devation](https://stackoverflow.com/a/14638138/14797322).
* [Welford's algorithm related blog post](https://www.johndcook.com/blog/standard_deviation/).
* Yeah, I used [Wikipedia](https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance) too.

View File

@ -1,186 +0,0 @@
package peakdetect
import (
"errors"
"fmt"
"math"
)
const (
// SignalNegative indicates that a particular value is a negative peak.
SignalNegative Signal = -1
// SignalNeutral indicates that a particular value is not a peak.
SignalNeutral Signal = 0
// SignalPositive indicates that a particular value is a positive peak.
SignalPositive Signal = 1
)
// Signal is a set of enums that indicates what type of peak, if any a particular value is.
type Signal int8
// ErrInvalidInitialValues indicates that the initial values provided are not valid to initialize a PeakDetector.
var ErrInvalidInitialValues = errors.New("the initial values provided are invalid")
type peakDetector struct {
index uint
influence float64
lag uint
movingMeanStdDev *movingMeanStdDev
prevMean float64
prevStdDev float64
prevValue float64
threshold float64
}
// PeakDetector detects peaks in realtime timeseries data using z-scores.
//
// This is a Golang interface for the algorithm described by this StackOverflow answer:
// https://stackoverflow.com/a/22640362/14797322
//
// Brakel, J.P.G. van (2014). "Robust peak detection algorithm using z-scores". Stack Overflow. Available
// at: https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/22640362#22640362
// (version: 2020-11-08).
type PeakDetector interface {
// Initialize initializes the PeakDetector with its configuration and initialValues. The initialValues are the first
// values to be processed by the PeakDetector. The length of these values are used to configure the PeakDetector's
// lag (see description below). The PeakDetector will never return any signals for the initialValues.
//
// influence determines the influence of signals on the algorithm's detection threshold. If put at 0, signals have
// no influence on the threshold, such that future signals are detected based on a threshold that is calculated with
// a mean and standard deviation that is not influenced by past signals. If put at 0.5, signals have half the
// influence of normal data points. Another way to think about this is that if you put the influence at 0, you
// implicitly assume stationary (i.e. no matter how many signals there are, you always expect the time series to
// return to the same average over the long term). If this is not the case, you should put the influence parameter
// somewhere between 0 and 1, depending on the extent to which signals can systematically influence the time-varying
// trend of the data. E.g., if signals lead to a structural break of the long-term average of the time series, the
// influence parameter should be put high (close to 1) so the threshold can react to structural breaks quickly.
//
// threshold is the number of standard deviations from the moving mean above which the algorithm will classify a new
// datapoint as being a signal. For example, if a new datapoint is 4.0 standard deviations above the moving mean and
// the threshold parameter is set as 3.5, the algorithm will identify the datapoint as a signal. This parameter
// should be set based on how many signals you expect. For example, if your data is normally distributed, a
// threshold (or: z-score) of 3.5 corresponds to a signaling probability of 0.00047 (from this table), which implies
// that you expect a signal once every 2128 datapoints (1/0.00047). The threshold therefore directly influences how
// sensitive the algorithm is and thereby also determines how often the algorithm signals. Examine your own data and
// choose a sensible threshold that makes the algorithm signal when you want it to (some trial-and-error might be
// needed here to get to a good threshold for your purpose).
//
// lag determines how much your data will be smoothed and how adaptive the algorithm is to change in the long-term
// average of the data. The more stationary your data is, the more lags you should include (this should improve the
// robustness of the algorithm). If your data contains time-varying trends, you should consider how quickly you want
// the algorithm to adapt to these trends. I.e., if you put lag at 10, it takes 10 'periods' before the algorithm's
// threshold is adjusted to any systematic changes in the long-term average. So choose the lag parameter based on
// the trending behavior of your data and how adaptive you want the algorithm to be.
Initialize(influence, threshold float64, initialValues []float64) error
// Next processes the next value and determines its signal.
Next(value float64) Signal
// NextBatch processes the next values and determines their signals. Their signals will be returned in a slice equal
// to the length of the input.
NextBatch(values []float64) []Signal
}
// NewPeakDetector creates a new PeakDetector. It must be initialized before use.
func NewPeakDetector() PeakDetector {
return &peakDetector{
movingMeanStdDev: &movingMeanStdDev{},
}
}
func (p *peakDetector) Initialize(influence, threshold float64, initialValues []float64) error {
p.lag = uint(len(initialValues))
if p.lag == 0 {
return fmt.Errorf("the length of the initial values is zero, the length is used as the lag for the algorithm: %w", ErrInvalidInitialValues)
}
p.influence = influence
p.threshold = threshold
p.prevMean, p.prevStdDev = p.movingMeanStdDev.initialize(initialValues)
p.prevValue = initialValues[p.lag-1]
return nil
}
func (p *peakDetector) Next(value float64) (signal Signal) {
p.index++
if p.index == p.lag {
p.index = 0
}
if math.Abs(value-p.prevMean) > p.threshold*p.prevStdDev {
if value > p.prevMean {
signal = SignalPositive
} else {
signal = SignalNegative
}
value = p.influence*value + (1-p.influence)*p.prevValue
} else {
signal = SignalNeutral
}
p.prevMean, p.prevStdDev = p.movingMeanStdDev.next(value)
p.prevValue = value
return signal
}
func (p *peakDetector) NextBatch(values []float64) []Signal {
signals := make([]Signal, len(values))
for i, v := range values {
signals[i] = p.Next(v)
}
return signals
}
// meanStdDev determines the mean and population standard deviation for the given population.
type movingMeanStdDev struct {
cache []float64
cacheLen float64
cacheLenU uint
index uint
prevMean float64
prevVariance float64
}
// initialize creates the needed assets for the movingMeanStdDev. It also computes the resulting mean and population
// standard deviation using Welford's method.
//
// https://www.johndcook.com/blog/standard_deviation/
func (m *movingMeanStdDev) initialize(initialValues []float64) (mean, stdDev float64) {
m.cacheLenU = uint(len(initialValues))
m.cacheLen = float64(m.cacheLenU)
m.cache = make([]float64, m.cacheLenU)
copy(m.cache, initialValues)
mean = initialValues[0]
prevMean := mean
var sumOfSquares float64
for i := uint(2); i <= m.cacheLenU; i++ {
value := initialValues[i-1]
mean = prevMean + (value-prevMean)/float64(i)
sumOfSquares = sumOfSquares + (value-prevMean)*(value-mean)
prevMean = mean
}
m.prevMean = mean
m.prevVariance = sumOfSquares / m.cacheLen
return mean, math.Sqrt(m.prevVariance)
}
// Next computes the next mean and population standard deviation. It uses a sliding window and is based on Welford's
// method.
//
// https://stackoverflow.com/a/14638138/14797322
func (m *movingMeanStdDev) next(value float64) (mean, stdDev float64) {
outOfWindow := m.cache[m.index]
m.cache[m.index] = value
m.index++
if m.index == m.cacheLenU {
m.index = 0
}
newMean := m.prevMean + (value-outOfWindow)/m.cacheLen
m.prevVariance = m.prevVariance + (value-newMean+outOfWindow-m.prevMean)*(value-outOfWindow)/(m.cacheLen)
m.prevMean = newMean
return m.prevMean, math.Sqrt(m.prevVariance)
}

18
vendor/github.com/goccmack/godsp/Readme.md generated vendored Normal file
View File

@ -0,0 +1,18 @@
# Package godsp
Package godsp is a Go package developed to support some basic signal processing functions using the discrete wavelet transform (DWT).
## Packages
- **go-dsp**: General functions on vectors or sets of vectors.
- **go-dsp/dbscan**: Implementation of DBSCAN (https://en.wikipedia.org/wiki/DBSCAN) to cluster histogram bins.
- **go-dsp/dwt**: Lifting implementation of the discrete wavelet transform using the Daubechies 4 wavelet. See:
Ripples in Mathematics. The Discrete Wavelet Transform.
A. Jensen and A. la Cour-Harbo
Springer 2001
Section 3.4
## Installation
$ go get github.com/mjibson/go-dsp/fft

526
vendor/github.com/goccmack/godsp/dsp.go generated vendored Normal file
View File

@ -0,0 +1,526 @@
/*
Copyright 2019 Marius Ackerman
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/*
Package dsp has a set of digital signal processing functions that are primarily
designed to support the discrete wavelet transform
("https://github.com/goccmack/dsp/dwt")
*/
package godsp
import (
"bufio"
"bytes"
"fmt"
"io/ioutil"
"math"
"strconv"
"strings"
myioutil "github.com/goccmack/goutil/ioutil"
)
// Abs returns |x|
func Abs(x []float64) []float64 {
x1 := make([]float64, len(x))
for i, f := range x {
x1[i] = math.Abs(f)
}
return x1
}
// AbsInt returns |x|
func AbsInt(x []int) []int {
x1 := make([]int, len(x))
for i, e := range x {
if e < 0 {
x1[i] = -e
} else {
x1[i] = e
}
}
return x1
}
// AbsAll returns Abs(x) for every x in X
func AbsAll(X [][]float64) [][]float64 {
x1 := make([][]float64, len(X))
for i, x := range X {
x1[i] = Abs(x)
}
return x1
}
/*
Average returns Sum(x)/len(x).
*/
func Average(x []float64) float64 {
return Sum(x) / float64(len(x))
}
/*
DivS returns x/s where x is a vector and s a scalar.
*/
func DivS(x []float64, s float64) []float64 {
y := make([]float64, len(x))
for i := range x {
y[i] = x[i] / s
}
return y
}
/*
DownSampleAll returns DownSample(x, len(x)/min(len(xs))) for all x in xs
*/
func DownSampleAll(xs [][]float64) [][]float64 {
N := len(xs[0])
for _, x := range xs {
if len(x) < N {
N = len(x)
}
}
ys := make([][]float64, len(xs))
for i, x := range xs {
ys[i] = DownSample(x, len(x)/N)
}
return ys
}
/*
DownSample returns x downsampled by n
Function panics if len(x) is not an integer multiple of n.
*/
func DownSample(x []float64, n int) []float64 {
if len(x)%n != 0 {
panic(fmt.Sprintf("len(x) (%d) is not an integer multiple of n (%d)", len(x), n))
}
x1 := make([]float64, len(x)/n)
for i, j := 0, 0; j < len(x1); i, j = i+n, j+1 {
x1[j] = x[i]
}
return x1
}
// FindMax returns the value and index of the first element of x equal to the maximum value in x.
func FindMax(x []float64) (value float64, index int) {
value, index = x[0], 0
for i := 1; i < len(x)-1; i++ {
if x[i] > value {
value, index = x[i], i
}
}
return
}
// FindMax* returns the value and index of the first element of x equal to the maximum value in x.
func FindMaxI(x []int) (value int, index int) {
value, index = x[0], 0
for i := 1; i < len(x)-1; i++ {
if x[i] > value {
value, index = x[i], i
}
}
return
}
// FindMin returns the value and index of the first element of x equal to the minimum value in x.
func FindMin(x []float64) (value float64, index int) {
value, index = x[0], 0
for i := 1; i < len(x)-1; i++ {
if x[i] < value {
value, index = x[i], i
}
}
return
}
/*
Float32ToFloat64 returns a copy of x with type []float64
*/
func Float32ToFloat64(x []float32) []float64 {
y := make([]float64, len(x))
for i, f := range x {
y[i] = float64(f)
}
return y
}
func IsPowerOf2(x int) bool {
return (x != 0) && ((x & (x - 1)) == 0)
}
/*
LoadFloats reads a text file containing one float per line.
*/
func LoadFloats(fname string) []float64 {
data, err := ioutil.ReadFile(fname)
if err != nil {
panic(err)
}
rdr := bufio.NewReader(bytes.NewBuffer(data))
x := make([]float64, 0, 1024)
for s, err := rdr.ReadString('\n'); err == nil; s, err = rdr.ReadString('\n') {
f, err := strconv.ParseFloat(strings.TrimSuffix(s, "\n"), 64)
if err != nil {
panic(err)
}
x = append(x, f)
}
return x
}
// Log2 returns the integer log base 2 of n.
// E.g.: log2(12) ~ 3.6. Log2 returns 3
func Log2(n int) int {
return int(math.Log2(float64(n)))
}
/*
LowpassFilterAll returns LowpassFilter(x) for all x in xs.
*/
func LowpassFilterAll(xs [][]float64, alpha float64) [][]float64 {
ys := make([][]float64, len(xs))
for i, x := range xs {
ys[i] = LowpassFilter(x, alpha)
}
return ys
}
/*
LowpassFilter returns x filtered by alpha
*/
func LowpassFilter(x []float64, alpha float64) []float64 {
y := make([]float64, len(x))
y[0] = alpha * x[0]
for i := 1; i < len(x); i++ {
y[i] = y[i-1] + alpha*(x[i]-y[i-1])
}
return y
}
// Max returns the maximum value of the elements of x
func Max(x []float64) float64 {
max := x[0]
for _, f := range x {
if f > max {
max = f
}
}
return max
}
// MaxInt returns the maximum value of the elements of x
func MaxInt(x []int) int {
max := x[0]
for _, f := range x {
if f > max {
max = f
}
}
return max
}
/*
MovAvg returns the moving average for each x[i], given by sum(x[i-w:i+w])/(2w)
*/
func MovAvg(x []float64, w int) []float64 {
y := make([]float64, len(x))
for i := w; i < len(x)-w; i++ {
y[i] = Sum(x[i-w:i+w]) / float64(2*w)
}
return y
}
/*
Multiplex returns on vector with the element of vs interleaved
*/
func Multiplex(channels [][]float64) []float64 {
numChans := len(channels)
chanLen := len(channels[0])
buf := make([]float64, numChans*chanLen)
for i := 0; i < chanLen; i++ {
k := i * numChans
for j := 0; j < numChans; j++ {
buf[k+j] = channels[j][i]
}
}
return buf
}
// Normalise returns x/max(x)
func Normalise(x []float64) []float64 {
x1 := make([]float64, len(x))
sum := Max(x)
for i, f := range x {
x1[i] = f / sum
}
return x1
}
// Normalise returns x/max(x) for all x in xs
func NormaliseAll(xs [][]float64) [][]float64 {
x1 := make([][]float64, len(xs))
for i, x := range xs {
x1[i] = Normalise(x)
}
return x1
}
// Pow2 returns 2^x.
// The function panics if x < 0
func Pow2(x int) int {
if x < 0 {
panic(fmt.Sprintf("X = %d", x))
}
pw := 1
for i := 1; i <= x; i++ {
pw *= 2
}
return pw
}
// Range returns an interger range 0:1:n-1
func Range(n int) []int {
rng := make([]int, n)
for i := range rng {
rng[i] = i
}
return rng
}
/*
RemoveAvgAllZ removes the average of all vectors x in xs. The minimum value
of any x[i] is 0.
*/
func RemoveAvgAllZ(xs [][]float64) [][]float64 {
xs1 := make([][]float64, len(xs))
for i, x := range xs {
xs1[i] = RemoveAvg(x)
}
return xs1
}
// RemoveAvgZ returns x[i] = x[i]-sum(x)/len(x) or 0 if x[i]-sum(x)/len(x) < 0
func RemoveAvg(x []float64) []float64 {
x1 := make([]float64, len(x))
avg := Sum(x) / float64(len(x))
for i, f := range x {
x1[i] = f - avg
if x1[i] < 0 {
x1[i] = 0
}
}
return x1
}
// Smooth smoothts x: x[i] = sum(x[i-wdw:i+wdw])/(2*wdw)
func Smooth(x []float64, wdw int) {
for i := 0; i < wdw; i++ {
x[i] = 0
}
for i := wdw; i < len(x)-wdw; i++ {
x[i] = Sum(x[i-wdw:i+wdw]) / float64((2 * wdw))
}
}
/*
Sub returns x - y. The function panics if len(x) != len(y).
*/
func Sub(x, y []float64) []float64 {
if len(x) != len(y) {
panic("len(x) != len(y)")
}
x1 := make([]float64, len(x))
for i := range x {
x1[i] = x[i] - y[i]
}
return x1
}
// Sum returns the sum of the elements of the vector x
func Sum(x []float64) float64 {
sum := 0.0
for _, f := range x {
sum += f
}
return sum
}
// SumVectors returns the sum of the vectors in X.
// The function panics if all vectors don't have the same length
func SumVectors(X [][]float64) []float64 {
N := len(X[0])
for i, x := range X {
if len(x) != N {
panic(fmt.Sprintf("N=%d but len(X[%d]=%d", N, i, len(x)))
}
}
sum := make([]float64, N)
for i := 0; i < N; i++ {
for j := range X {
sum[i] += X[j][i]
}
}
return sum
}
func ToFloat(x []int) []float64 {
y := make([]float64, len(x))
for i, e := range x {
y[i] = float64(e) / float64(math.MaxInt64)
}
return y
}
/*
ToInt returns y * math.MaxInt64.
The range of x is [-1.0,1.0].
The function panics if bitsPerSample is not one of 8,16,32.
*/
func ToInt(x []float64, bitsPerSample int) []int {
y := make([]int, len(x))
if bitsPerSample != 8 && bitsPerSample != 16 && bitsPerSample != 32 {
panic(fmt.Sprintf("Invalid bitsPerSample %d", bitsPerSample))
}
max := float64(int(1)<<bitsPerSample - 1)
for i, f := range x {
y[i] = int(f * max)
}
return y
}
func ToIntS(x float64, bitsPerSample int) int {
max := float64(int(1)<<bitsPerSample - 1)
return int(x * max)
}
func findLocalMax(x []float64, from, wdw, step int) (maxI, slopeEnd int) {
i, slp := from+wdw, 0
for slp >= 0 && i < len(x)-wdw {
slp = slope(x[i : i+wdw])
i += step
}
_, maxI = FindMax(x[from:i])
maxI += from
slopeEnd = i
return
}
func findLocalMin(x []float64, from, wdw, step int) (minI, slopeEnd int) {
i, slp := from+wdw, 0
for slp <= 0 && i < len(x)-wdw {
slp = slope(x[i : i+wdw])
i += step
}
_, minI = FindMin(x[from:i])
minI += from
slopeEnd = i
return
}
func findNon0Slope(x []float64, from, wdw int) (slp, end int) {
for i := from; i < len(x)-wdw; i++ {
slp := slope(x[i : i+wdw])
if slp != 0 {
return slp, i
}
}
return 0, len(x)
}
// slope returns +1, 0, -1
func slope(x []float64) int {
end := len(x) - 1
if x[0] < x[end] {
return -1
}
if x[0] == x[end] {
return 0
}
return 1
}
func ivecContain(x []int, v int) bool {
for _, v1 := range x {
if v1 == v {
return true
}
}
return false
}
// WriteAllDataFile writes each xs[i] in xs to a test file `fname_i.txt`
func WriteAllDataFile(xs [][]float64, fname string) {
for i, xs := range xs {
WriteDataFile(xs, fmt.Sprintf("%s_%d", fname, i))
}
}
// WriteDataFile writes x to a text file `fname.txt`
func WriteDataFile(x []float64, fname string) {
buf := new(bytes.Buffer)
for _, f := range x {
fmt.Fprintf(buf, "%f\n", f)
}
if err := myioutil.WriteFile(fname+".txt", buf.Bytes()); err != nil {
panic(err)
}
}
// WriteIntDataFile writes x to a text file `fname.txt`
func WriteIntDataFile(x []int, fname string) {
buf := new(bytes.Buffer)
for _, f := range x {
fmt.Fprintf(buf, "%d\n", f)
}
if err := myioutil.WriteFile(fname+".txt", buf.Bytes()); err != nil {
panic(err)
}
}
/*
WriteIntMatrixDataFile writes an integer matrix to a text file `fname.csv`
*/
func WriteIntMatrixDataFile(x [][]int, fname string) {
buf := new(bytes.Buffer)
for _, row := range x {
for i, col := range row {
if i > 0 {
fmt.Fprint(buf, ",")
}
fmt.Fprintf(buf, "%d", col)
}
fmt.Fprintln(buf)
}
if err := myioutil.WriteFile(fname+".csv", buf.Bytes()); err != nil {
panic(err)
}
}
/*
Xcorr returns the cross correlation of x with y for maxDelay.
*/
func Xcorr(x, y []float64, maxDelay int) (corr []float64) {
N := len(x)
corr = make([]float64, maxDelay)
for k := 0; k < maxDelay; k++ {
for n := 0; n < N-k; n++ {
corr[k] += x[n] * y[n+k]
}
corr[k] /= float64(N)
}
return
}

135
vendor/github.com/goccmack/godsp/peaks/peaks.go generated vendored Normal file
View File

@ -0,0 +1,135 @@
// Copyright 2019 Marius Ackerman
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
Package peaks finds the maxima in a vector. It works by lowering a horizontal line
across the signal, revealing peaks as it proceeds. Peaks that are closer to
each other than a minimum separation distance are merged to the left (lower index).
*/
package peaks
import (
"math"
"sort"
"github.com/goccmack/godsp"
)
const (
empty = -1
)
/*
Get returns a slice containing the indices of the peaks in x.
sep is the minimum distance between 2 peaks. Peaks closer to each other than
sep are merged to the lower index.
*/
func Get(x []float64, sep int) []int {
pks := []int{}
for i := range x {
if isMax(i, i-sep, i+sep, x) {
pks = append(pks, i)
}
}
return pks
}
func getMaxIndex(x []float64) int {
i, max := 0, math.Inf(-1)
for j, y := range x {
if y > max {
i, max = j, y
}
}
if max > 0 {
return i
}
return -1
}
func isMax(i, min, max int, x []float64) bool {
if min < 0 {
min = 0
}
if max > len(x) {
max = len(x)
}
for j := min; j < i; j++ {
if x[j] >= x[i] {
return false
}
}
for j := i + 1; j < max; j++ {
if x[j] > x[i] {
return false
}
}
return true
}
func getWindow(i, sep int, x []float64) (min, max int) {
min, max = i-sep, i+sep
if min < 0 {
min = 0
}
if max > len(x) {
max = len(x)
}
return
}
// func Get(x []float64, sep int) []int {
// si := getSortedIndices(x)
// pks := getEmptyPeaks(len(x))
// for _, xi := range si {
// if pks[xi] == empty {
// markNeighbours(xi, sep, pks)
// }
// }
// uniquePeaks := make([]int, 0, len(x)/(2*sep))
// for i, xi := range pks {
// if i == xi {
// uniquePeaks = append(uniquePeaks, xi)
// }
// }
// return uniquePeaks
// }
func getEmptyPeaks(n int) []int {
epks := make([]int, n)
for i := range epks {
epks[i] = empty
}
return epks
}
func getSortedIndices(x []float64) []int {
idx := godsp.Range(len(x))
sort.SliceStable(idx, func(i, j int) bool { return x[i] > x[j] })
return idx
}
func markNeighbours(xi, sep int, pks []int) {
min := xi - sep
if min < 0 {
min = 0
}
max := xi + sep
if max > len(pks) {
max = len(pks)
}
for i := min; i < max; i++ {
pks[i] = xi
}
}

56
vendor/github.com/goccmack/godsp/wavread.go generated vendored Normal file
View File

@ -0,0 +1,56 @@
// Copyright 2019 Marius Ackerman
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package godsp
import (
"bytes"
"io/ioutil"
"github.com/mjibson/go-dsp/wav"
)
/*
ReadWavFile returns the demultiplexed channels of a wav file, and the sample rate in Hz.
*/
func ReadWavFile(wavName string) (channels [][]float64, sampleRate, bitsPerSample int) {
buf, err := ioutil.ReadFile(wavName)
if err != nil {
panic(err)
}
rdr, err := wav.New(bytes.NewBuffer(buf))
if err != nil {
panic(err)
}
numSamples, numChannels := rdr.Samples, int(rdr.NumChannels)
sampleRate = int(rdr.SampleRate)
bitsPerSample = int(rdr.Header.BitsPerSample)
channels = make([][]float64, numChannels)
chanLen := numSamples / numChannels
for i := range channels {
channels[i] = make([]float64, chanLen)
}
samples, err := rdr.ReadFloats(rdr.Samples)
if err != nil {
panic(err)
}
for i, j := 0, 0; i < len(samples); {
for _, ch := range channels {
ch[j] = float64(samples[i])
i++
}
j++
}
return
}

201
vendor/github.com/goccmack/goutil/LICENSE generated vendored Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

55
vendor/github.com/goccmack/goutil/ioutil/ioutil.go generated vendored Normal file
View File

@ -0,0 +1,55 @@
// Copyright 2020 Marius Ackerman
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
Package ioutil contains functions for writing directories and files.
*/
package ioutil
import (
"fmt"
"io/ioutil"
"os"
"path/filepath"
)
// FilePermission given to all created files and directories
const FilePermission = 0731
// Exist returns true if path exists, otherwise false.
func Exist(path string) bool {
_, err := os.Stat(path)
return err == nil
}
// MkdirAll makes all the directories in path.
func MkdirAll(path string) error {
if path == "" {
return nil
}
return os.MkdirAll(path, FilePermission)
}
// WriteFile creates all the non-existend directories in path before writing
// data to path.
func WriteFile(path string, data []byte) error {
dir, _ := filepath.Split(path)
if err := MkdirAll(dir); err != nil {
return fmt.Errorf("Error creating directory %s: %s", dir, err)
}
if err := ioutil.WriteFile(path, data, FilePermission); err != nil {
return fmt.Errorf("Error writing file %s: %s\n", path, err)
}
return nil
}

13
vendor/github.com/mjibson/go-dsp/LICENSE generated vendored Normal file
View File

@ -0,0 +1,13 @@
Copyright (c) 2011 Matt Jibson <matt.jibson@gmail.com>
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

BIN
vendor/github.com/mjibson/go-dsp/wav/float.wav generated vendored Normal file

Binary file not shown.

BIN
vendor/github.com/mjibson/go-dsp/wav/small.wav generated vendored Normal file

Binary file not shown.

161
vendor/github.com/mjibson/go-dsp/wav/wav.go generated vendored Normal file
View File

@ -0,0 +1,161 @@
/*
* Copyright (c) 2012 Matt Jibson <matt.jibson@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
// Package wav provides support for the WAV file format.
//
// Supported formats are PCM 8- and 16-bit, and IEEE float. Extended chunks
// (JUNK, bext, and others added by tools like ProTools) are ignored.
package wav
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"io/ioutil"
"math"
"time"
)
const (
wavFormatPCM = 1
wavFormatIEEEFloat = 3
)
// Header contains Wav fmt chunk data.
type Header struct {
AudioFormat uint16
NumChannels uint16
SampleRate uint32
ByteRate uint32
BlockAlign uint16
BitsPerSample uint16
}
// Wav reads wav files.
type Wav struct {
Header
// Samples is the total number of available samples.
Samples int
// Duration is the estimated duration based on reported samples.
Duration time.Duration
r io.Reader
}
// New reads the WAV header from r.
func New(r io.Reader) (*Wav, error) {
var w Wav
header := make([]byte, 16)
if _, err := io.ReadFull(r, header[:12]); err != nil {
return nil, err
}
if string(header[0:4]) != "RIFF" {
return nil, fmt.Errorf("wav: missing RIFF")
}
if string(header[8:12]) != "WAVE" {
return nil, fmt.Errorf("wav: missing WAVE")
}
hasFmt := false
for {
if _, err := io.ReadFull(r, header[:8]); err != nil {
return nil, err
}
sz := binary.LittleEndian.Uint32(header[4:])
switch typ := string(header[:4]); typ {
case "fmt ":
if sz < 16 {
return nil, fmt.Errorf("wav: bad fmt size")
}
f := make([]byte, sz)
if _, err := io.ReadFull(r, f); err != nil {
return nil, err
}
if err := binary.Read(bytes.NewBuffer(f), binary.LittleEndian, &w.Header); err != nil {
return nil, err
}
switch w.AudioFormat {
case wavFormatPCM:
case wavFormatIEEEFloat:
default:
return nil, fmt.Errorf("wav: unknown audio format: %02x", w.AudioFormat)
}
hasFmt = true
case "data":
if !hasFmt {
return nil, fmt.Errorf("wav: unexpected fmt chunk")
}
w.Samples = int(sz) / int(w.BitsPerSample) * 8
w.Duration = time.Duration(w.Samples) * time.Second / time.Duration(w.SampleRate) / time.Duration(w.NumChannels)
w.r = io.LimitReader(r, int64(sz))
return &w, nil
default:
io.CopyN(ioutil.Discard, r, int64(sz))
}
}
}
// ReadSamples returns a [n]T, where T is uint8, int16, or float32, based on the
// wav data. n is the number of samples to return.
func (w *Wav) ReadSamples(n int) (interface{}, error) {
var data interface{}
switch w.AudioFormat {
case wavFormatPCM:
switch w.BitsPerSample {
case 8:
data = make([]uint8, n)
case 16:
data = make([]int16, n)
default:
return nil, fmt.Errorf("wav: unknown bits per sample: %v", w.BitsPerSample)
}
case wavFormatIEEEFloat:
data = make([]float32, n)
default:
return nil, fmt.Errorf("wav: unknown audio format")
}
if err := binary.Read(w.r, binary.LittleEndian, data); err != nil {
return nil, err
}
return data, nil
}
// ReadFloats is like ReadSamples, but it converts any underlying data to a
// float32.
func (w *Wav) ReadFloats(n int) ([]float32, error) {
d, err := w.ReadSamples(n)
if err != nil {
return nil, err
}
var f []float32
switch d := d.(type) {
case []uint8:
f = make([]float32, len(d))
for i, v := range d {
f[i] = float32(v) / math.MaxUint8
}
case []int16:
f = make([]float32, len(d))
for i, v := range d {
f[i] = (float32(v) - math.MinInt16) / (math.MaxInt16 - math.MinInt16)
}
case []float32:
f = d
default:
return nil, fmt.Errorf("wav: unknown type: %T", d)
}
return f, nil
}

13
vendor/modules.txt vendored
View File

@ -1,6 +1,3 @@
# github.com/MicahParks/peakdetect v0.1.2
## explicit; go 1.13
github.com/MicahParks/peakdetect
# github.com/chewxy/math32 v1.11.1
## explicit; go 1.13
github.com/chewxy/math32
@ -46,6 +43,13 @@ github.com/go-text/typesetting/language
github.com/go-text/typesetting/segmenter
github.com/go-text/typesetting/shaping
github.com/go-text/typesetting/unicodedata
# github.com/goccmack/godsp v0.1.1
## explicit; go 1.13
github.com/goccmack/godsp
github.com/goccmack/godsp/peaks
# github.com/goccmack/goutil v0.4.0
## explicit; go 1.13
github.com/goccmack/goutil/ioutil
# github.com/godbus/dbus v4.1.0+incompatible
## explicit
github.com/godbus/dbus
@ -107,6 +111,9 @@ github.com/kirsle/configdir
# github.com/leberKleber/go-mpris v1.1.0
## explicit; go 1.19
github.com/leberKleber/go-mpris
# github.com/mjibson/go-dsp v0.0.0-20180508042940-11479a337f12
## explicit
github.com/mjibson/go-dsp/wav
# github.com/smallnest/ringbuffer v0.0.0-20241129171057-356c688ba81d
## explicit; go 1.19
github.com/smallnest/ringbuffer