// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package math32 import "math/bits" /* Floating-point sine and cosine. */ // The original C code, the long comment, and the constants // below were from http://netlib.sandia.gov/cephes/cmath/sin.c, // available from http://www.netlib.org/cephes/cmath.tgz. // The go code is a simplified version of the original C. // // sin.c // // Circular sine // // SYNOPSIS: // // double x, y, sin(); // y = sin( x ); // // DESCRIPTION: // // Range reduction is into intervals of pi/4. The reduction error is nearly // eliminated by contriving an extended precision modular arithmetic. // // Two polynomial approximating functions are employed. // Between 0 and pi/4 the sine is approximated by // x + x**3 P(x**2). // Between pi/4 and pi/2 the cosine is represented as // 1 - x**2 Q(x**2). // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // DEC 0, 10 150000 3.0e-17 7.8e-18 // IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17 // // Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss // is not gradual, but jumps suddenly to about 1 part in 10e7. Results may // be meaningless for x > 2**49 = 5.6e14. // // cos.c // // Circular cosine // // SYNOPSIS: // // double x, y, cos(); // y = cos( x ); // // DESCRIPTION: // // Range reduction is into intervals of pi/4. The reduction error is nearly // eliminated by contriving an extended precision modular arithmetic. // // Two polynomial approximating functions are employed. // Between 0 and pi/4 the cosine is approximated by // 1 - x**2 Q(x**2). // Between pi/4 and pi/2 the sine is represented as // x + x**3 P(x**2). // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17 // DEC 0,+1.07e9 17000 3.0e-17 7.2e-18 // // Cephes Math Library Release 2.8: June, 2000 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier // // The readme file at http://netlib.sandia.gov/cephes/ says: // Some software in this archive may be from the book _Methods and // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster // International, 1989) or from the Cephes Mathematical Library, a // commercial product. In either event, it is copyrighted by the author. // What you see here may be used freely but it comes with no support or // guarantee. // // The two known misprints in the book are repaired here in the // source listings for the gamma function and the incomplete beta // integral. // // Stephen L. Moshier // moshier@na-net.ornl.gov // sin coefficients var _sin = [...]float32{ 1.58962301576546568060e-10, // 0x3de5d8fd1fd19ccd -2.50507477628578072866e-8, // 0xbe5ae5e5a9291f5d 2.75573136213857245213e-6, // 0x3ec71de3567d48a1 -1.98412698295895385996e-4, // 0xbf2a01a019bfdf03 8.33333333332211858878e-3, // 0x3f8111111110f7d0 -1.66666666666666307295e-1, // 0xbfc5555555555548 } // cos coefficients var _cos = [...]float32{ -1.13585365213876817300e-11, // 0xbda8fa49a0861a9b 2.08757008419747316778e-9, // 0x3e21ee9d7b4e3f05 -2.75573141792967388112e-7, // 0xbe927e4f7eac4bc6 2.48015872888517045348e-5, // 0x3efa01a019c844f5 -1.38888888888730564116e-3, // 0xbf56c16c16c14f91 4.16666666666665929218e-2, // 0x3fa555555555554b } // Sincos returns Sin(x), Cos(x). // // Special cases are: // Sincos(±0) = ±0, 1 // Sincos(±Inf) = NaN, NaN // Sincos(NaN) = NaN, NaN func Sincos(x float32) (sin, cos float32) { const ( PI4A = 7.85398125648498535156e-1 // 0x3fe921fb40000000, Pi/4 split into three parts PI4B = 3.77489470793079817668e-8 // 0x3e64442d00000000, PI4C = 2.69515142907905952645e-15 // 0x3ce8469898cc5170, ) // special cases switch { case x == 0: return x, 1 // return ±0.0, 1.0 case IsNaN(x) || IsInf(x, 0): return NaN(), NaN() } // make argument positive sinSign, cosSign := false, false if x < 0 { x = -x sinSign = true } var j uint64 var y, z float32 if x >= reduceThreshold { j, z = trigReduce(x) } else { j = uint64(x * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle y = float32(j) // integer part of x/(Pi/4), as float if j&1 == 1 { // map zeros to origin j++ y++ } j &= 7 // octant modulo 2Pi radians (360 degrees) z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic } if j > 3 { // reflect in x axis j -= 4 sinSign, cosSign = !sinSign, !cosSign } if j > 1 { cosSign = !cosSign } zz := z * z cos = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5]) sin = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5]) if j == 1 || j == 2 { sin, cos = cos, sin } if cosSign { cos = -cos } if sinSign { sin = -sin } return } // Sin returns the sine of the radian argument x. // // Special cases are: // Sin(±0) = ±0 // Sin(±Inf) = NaN // Sin(NaN) = NaN func Sin(x float32) float32 { const ( PI4A = 7.85398125648498535156e-1 // 0x3fe921fb40000000, Pi/4 split into three parts PI4B = 3.77489470793079817668e-8 // 0x3e64442d00000000, PI4C = 2.69515142907905952645e-15 // 0x3ce8469898cc5170, ) // special cases switch { case x == 0 || IsNaN(x): return x // return ±0 || NaN() case IsInf(x, 0): return NaN() } // make argument positive but save the sign sign := false if x < 0 { x = -x sign = true } var j uint64 var y, z float32 if x >= reduceThreshold { j, z = trigReduce(x) } else { j = uint64(x * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle y = float32(j) // integer part of x/(Pi/4), as float // map zeros to origin if j&1 == 1 { j++ y++ } j &= 7 // octant modulo 2Pi radians (360 degrees) z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic } // reflect in x axis if j > 3 { sign = !sign j -= 4 } zz := z * z if j == 1 || j == 2 { y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5]) } else { y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5]) } if sign { y = -y } return y } // Cos returns the cosine of the radian argument x. // // Special cases are: // Cos(±Inf) = NaN // Cos(NaN) = NaN func Cos(x float32) float32 { const ( PI4A = 7.85398125648498535156e-1 // 0x3fe921fb40000000, Pi/4 split into three parts PI4B = 3.77489470793079817668e-8 // 0x3e64442d00000000, PI4C = 2.69515142907905952645e-15 // 0x3ce8469898cc5170, ) // special cases switch { case IsNaN(x) || IsInf(x, 0): return NaN() } // make argument positive sign := false x = Abs(x) var j uint64 var y, z float32 if x >= reduceThreshold { j, z = trigReduce(x) } else { j = uint64(x * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle y = float32(j) // integer part of x/(Pi/4), as float // map zeros to origin if j&1 == 1 { j++ y++ } j &= 7 // octant modulo 2Pi radians (360 degrees) z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic } if j > 3 { j -= 4 sign = !sign } if j > 1 { sign = !sign } zz := z * z if j == 1 || j == 2 { y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5]) } else { y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5]) } if sign { y = -y } return y } // reduceThreshold is the maximum value of x where the reduction using Pi/4 // in 3 float64 parts still gives accurate results. This threshold // is set by y*C being representable as a float64 without error // where y is given by y = floor(x * (4 / Pi)) and C is the leading partial // terms of 4/Pi. Since the leading terms (PI4A and PI4B in sin.go) have 30 // and 32 trailing zero bits, y should have less than 30 significant bits. // y < 1<<30 -> floor(x*4/Pi) < 1<<30 -> x < (1<<30 - 1) * Pi/4 // So, conservatively we can take x < 1<<29. // Above this threshold Payne-Hanek range reduction must be used. const reduceThreshold = 1 << 29 // trigReduce implements Payne-Hanek range reduction by Pi/4 // for x > 0. It returns the integer part mod 8 (j) and // the fractional part (z) of x / (Pi/4). // The implementation is based on: // "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit" // K. C. Ng et al, March 24, 1992 // The simulated multi-precision calculation of x*B uses 64-bit integer arithmetic. func trigReduce(x float32) (j uint64, z float32) { const PI4 = Pi / 4 if x < PI4 { return 0, x } // Extract out the integer and exponent such that, // x = ix * 2 ** exp. ix := Float32bits(x) exp := int(ix>>shift&mask) - bias - shift ix &^= mask << shift ix |= 1 << shift // Use the exponent to extract the 3 appropriate uint64 digits from mPi4, // B ~ (z0, z1, z2), such that the product leading digit has the exponent -61. // Note, exp >= -53 since x >= PI4 and exp < 971 for maximum float64. const floatingbits = 32 - 3 digit, bitshift := uint(exp+floatingbits)/32, uint(exp+floatingbits)%32 z0 := (mPi4[digit] << bitshift) | (mPi4[digit+1] >> (32 - bitshift)) z1 := (mPi4[digit+1] << bitshift) | (mPi4[digit+2] >> (32 - bitshift)) z2 := (mPi4[digit+2] << bitshift) | (mPi4[digit+3] >> (32 - bitshift)) // Multiply mantissa by the digits and extract the upper two digits (hi, lo). z2hi, _ := bits.Mul64(z2, uint64(ix)) z1hi, z1lo := bits.Mul64(z1, uint64(ix)) z0lo := z0 * uint64(ix) lo, c := bits.Add64(z1lo, z2hi, 0) hi, _ := bits.Add64(z0lo, z1hi, c) // The top 3 bits are j. j = hi >> floatingbits // Extract the fraction and find its magnitude. hi = hi<<3 | lo>>floatingbits lz := uint(bits.LeadingZeros64(hi)) e := uint64(bias - (lz + 1)) // Clear implicit mantissa bit and shift into place. hi = (hi << (lz + 1)) | (lo >> (32 - (lz + 1))) hi >>= 43 - shift // Include the exponent and convert to a float. hi |= e << shift z = Float32frombits(uint32(hi)) // Map zeros to origin. if j&1 == 1 { j++ j &= 7 z-- } // Multiply the fractional part by pi/4. return j, z * PI4 } // mPi4 is the binary digits of 4/pi as a uint64 array, // that is, 4/pi = Sum mPi4[i]*2^(-64*i) // 19 64-bit digits and the leading one bit give 1217 bits // of precision to handle the largest possible float64 exponent. var mPi4 = [...]uint64{ 0x0000000000000001, 0x45f306dc9c882a53, 0xf84eafa3ea69bb81, 0xb6c52b3278872083, 0xfca2c757bd778ac3, 0x6e48dc74849ba5c0, 0x0c925dd413a32439, 0xfc3bd63962534e7d, 0xd1046bea5d768909, 0xd338e04d68befc82, 0x7323ac7306a673e9, 0x3908bf177bf25076, 0x3ff12fffbc0b301f, 0xde5e2316b414da3e, 0xda6cfd9e4f96136e, 0x9e8c7ecd3cbfd45a, 0xea4f758fd7cbe2f6, 0x7a0e73ef14a525d4, 0xd7f6bf623f1aba10, 0xac06608df8f6d757, }