//go:build !tinygo && !noasm // Copyright 2017 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #define Ln2Hi 6.9313812256e-01 #define Ln2Lo 9.0580006145e-06 #define Log2e 1.4426950216e+00 #define Overflow 7.097827e+02 #define Underflow -7.451332e+02 #define Overflow2 1.024000e+03 #define Underflow2 -1.0740e+03 #define NearZero 0x317fffff // 2**-28 #define PosInf 0x7f800000 #define FracMask 0x07fffff #define C1 0x34000000 // 2**-23 #define P1 1.6666667163e-01 // 0x3FC55555; 0x55555555 #define P2 -2.7777778450e-03 // 0xBF66C16C; 0x16BEBD93 #define P3 6.6137559770e-05 // 0x3F11566A; 0xAF25DE2C #define P4 -1.6533901999e-06 // 0xBEBBBD41; 0xC5D26BF1 #define P5 4.1381369442e-08 // 0x3E663769; 0x72BEA4D0 // Exp returns e**x, the base-e exponential of x. // This is an assembly implementation of the method used for function Exp in file exp.go. // // func archExp(x float32) float32 TEXT ·archExp(SB),$0-12 FMOVS x+0(FP), F0 // F0 = x FCMPS F0, F0 BNE isNaN // x = NaN, return NaN FMOVS $Overflow, F1 FCMPS F1, F0 BGT overflow // x > Overflow, return PosInf FMOVS $Underflow, F1 FCMPS F1, F0 BLT underflow // x < Underflow, return 0 MOVW $NearZero, R0 FMOVS R0, F2 FABSS F0, F3 FMOVS $1.0, F1 // F1 = 1.0 FCMPS F2, F3 BLT nearzero // fabs(x) < NearZero, return 1 + x // argument reduction, x = k*ln2 + r, |r| <= 0.5*ln2 // computed as r = hi - lo for extra precision. FMOVS $Log2e, F2 FMOVS $0.5, F3 FNMSUBS F0, F3, F2, F4 // Log2e*x - 0.5 FMADDS F0, F3, F2, F3 // Log2e*x + 0.5 FCMPS $0.0, F0 FCSELS LT, F4, F3, F3 // F3 = k FCVTZSS F3, R1 // R1 = int(k) SCVTFS R1, F3 // F3 = float32(int(k)) FMOVS $Ln2Hi, F4 // F4 = Ln2Hi FMOVS $Ln2Lo, F5 // F5 = Ln2Lo FMSUBS F3, F0, F4, F4 // F4 = hi = x - float32(int(k))*Ln2Hi FMULS F3, F5 // F5 = lo = float32(int(k)) * Ln2Lo FSUBS F5, F4, F6 // F6 = r = hi - lo FMULS F6, F6, F7 // F7 = t = r * r // compute y FMOVS $P5, F8 // F8 = P5 FMOVS $P4, F9 // F9 = P4 FMADDS F7, F9, F8, F13 // P4+t*P5 FMOVS $P3, F10 // F10 = P3 FMADDS F7, F10, F13, F13 // P3+t*(P4+t*P5) FMOVS $P2, F11 // F11 = P2 FMADDS F7, F11, F13, F13 // P2+t*(P3+t*(P4+t*P5)) FMOVS $P1, F12 // F12 = P1 FMADDS F7, F12, F13, F13 // P1+t*(P2+t*(P3+t*(P4+t*P5))) FMSUBS F7, F6, F13, F13 // F13 = c = r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))) FMOVS $2.0, F14 FSUBS F13, F14 FMULS F6, F13, F15 FDIVS F14, F15 // F15 = (r*c)/(2-c) FSUBS F15, F5, F15 // lo-(r*c)/(2-c) FSUBS F4, F15, F15 // (lo-(r*c)/(2-c))-hi FSUBS F15, F1, F16 // F16 = y = 1-((lo-(r*c)/(2-c))-hi) // inline Ldexp(y, k), benefit: // 1, no parameter pass overhead. // 2, skip unnecessary checks for Inf/NaN/Zero FMOVS F16, R0 ANDS $FracMask, R0, R2 // fraction LSRW $23, R0, R5 // exponent ADDS R1, R5 // R1 = int(k) CMPW $1, R5 BGE normal ADDS $23, R5 // denormal MOVW $C1, R8 FMOVS R8, F1 // m = 2**-23 normal: ORRW R5<<23, R2, R0 FMOVS R0, F0 FMULS F1, F0 // return m * x FMOVS F0, ret+8(FP) RET nearzero: FADDS F1, F0 isNaN: FMOVS F0, ret+8(FP) RET underflow: MOVW ZR, ret+8(FP) RET overflow: MOVW $PosInf, R0 MOVW R0, ret+8(FP) RET // Exp2 returns 2**x, the base-2 exponential of x. // This is an assembly implementation of the method used for function Exp2 in file exp.go. // // func archExp2(x float32) float32 TEXT ·archExp2(SB),$0-12 // Is this correct? FMOVS x+0(FP), F0 // F0 = x FCMPS F0, F0 BNE isNaN // x = NaN, return NaN FMOVS $Overflow2, F1 FCMPS F1, F0 BGT overflow // x > Overflow, return PosInf FMOVS $Underflow2, F1 FCMPS F1, F0 BLT underflow // x < Underflow, return 0 // argument reduction; x = r*lg(e) + k with |r| <= ln(2)/2 // computed as r = hi - lo for extra precision. FMOVS $0.5, F2 FSUBS F2, F0, F3 // x + 0.5 FADDS F2, F0, F4 // x - 0.5 FCMPS $0.0, F0 FCSELS LT, F3, F4, F3 // F3 = k FCVTZSS F3, R1 // R1 = int(k) SCVTFS R1, F3 // F3 = float32(int(k)) FSUBS F3, F0, F3 // t = x - float32(int(k)) FMOVS $Ln2Hi, F4 // F4 = Ln2Hi FMOVS $Ln2Lo, F5 // F5 = Ln2Lo FMULS F3, F4 // F4 = hi = t * Ln2Hi FNMULS F3, F5 // F5 = lo = -t * Ln2Lo FSUBS F5, F4, F6 // F6 = r = hi - lo FMULS F6, F6, F7 // F7 = t = r * r // compute y FMOVS $P5, F8 // F8 = P5 FMOVS $P4, F9 // F9 = P4 FMADDS F7, F9, F8, F13 // P4+t*P5 FMOVS $P3, F10 // F10 = P3 FMADDS F7, F10, F13, F13 // P3+t*(P4+t*P5) FMOVS $P2, F11 // F11 = P2 FMADDS F7, F11, F13, F13 // P2+t*(P3+t*(P4+t*P5)) FMOVS $P1, F12 // F12 = P1 FMADDS F7, F12, F13, F13 // P1+t*(P2+t*(P3+t*(P4+t*P5))) FMSUBS F7, F6, F13, F13 // F13 = c = r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))) FMOVS $2.0, F14 FSUBS F13, F14 FMULS F6, F13, F15 FDIVS F14, F15 // F15 = (r*c)/(2-c) FMOVS $1.0, F1 // F1 = 1.0 FSUBS F15, F5, F15 // lo-(r*c)/(2-c) FSUBS F4, F15, F15 // (lo-(r*c)/(2-c))-hi FSUBS F15, F1, F16 // F16 = y = 1-((lo-(r*c)/(2-c))-hi) // inline Ldexp(y, k), benefit: // 1, no parameter pass overhead. // 2, skip unnecessary checks for Inf/NaN/Zero FMOVS F16, R0 ANDS $FracMask, R0, R2 // fraction LSRW $23, R0, R5 // exponent ADDS R1, R5 // R1 = int(k) CMPW $1, R5 BGE normal ADDS $23, R5 // denormal MOVW $C1, R8 FMOVS R8, F1 // m = 2**-52 normal: ORRW R5<<23, R2, R0 FMOVS R0, F0 FMULS F1, F0 // return m * x isNaN: FMOVS F0, ret+8(FP) RET underflow: MOVW ZR, ret+8(FP) RET overflow: MOVW $PosInf, R0 MOVW R0, ret+8(FP) RET