package math32 const ( uvnan = 0x7FE00000 uvinf = 0x7F800000 uvone = 0x3f800000 uvneginf = 0xFF800000 mask = 0xFF shift = 32 - 8 - 1 bias = 127 signMask = 1 << 31 fracMask = 1<= 0, negative infinity if sign < 0. func Inf(sign int) float32 { var v uint32 if sign >= 0 { v = uvinf } else { v = uvneginf } return Float32frombits(v) } // NaN returns an IEEE 754 ``not-a-number'' value. func NaN() float32 { return Float32frombits(uvnan) } // IsNaN reports whether f is an IEEE 754 ``not-a-number'' value. func IsNaN(f float32) (is bool) { // IEEE 754 says that only NaNs satisfy f != f. // To avoid the floating-point hardware, could use: // x := Float32bits(f) // return uint32(x>>shift)&mask == mask && x != uvinf && x != uvneginf return f != f } // IsInf reports whether f is an infinity, according to sign. // If sign > 0, IsInf reports whether f is positive infinity. // If sign < 0, IsInf reports whether f is negative infinity. // If sign == 0, IsInf reports whether f is either infinity. func IsInf(f float32, sign int) bool { // Test for infinity by comparing against maximum float. // To avoid the floating-point hardware, could use: // x := Float32bits(f) // return sign >= 0 && x == uvinf || sign <= 0 && x == uvneginf return sign >= 0 && f > MaxFloat32 || sign <= 0 && f < -MaxFloat32 } // normalize returns a normal number y and exponent exp // satisfying x == y × 2**exp. It assumes x is finite and non-zero. func normalize(x float32) (y float32, exp int) { const SmallestNormal = 1.1754943508222875079687365e-38 // 2**-(127 - 1) if Abs(x) < SmallestNormal { return x * (1 << shift), -shift } return x, 0 }