package math32 // Round returns the nearest integer, rounding half away from zero. // // Special cases are: // Round(±0) = ±0 // Round(±Inf) = ±Inf // Round(NaN) = NaN func Round(x float32) float32 { // Round is a faster implementation of: // // func Round(x float64) float64 { // t := Trunc(x) // if Abs(x-t) >= 0.5 { // return t + Copysign(1, x) // } // return t // } bits := Float32bits(x) e := uint(bits>>shift) & mask if e < bias { // Round abs(x) < 1 including denormals. bits &= signMask // +-0 if e == bias-1 { bits |= uvone // +-1 } } else if e < bias+shift { // Round any abs(x) >= 1 containing a fractional component [0,1). // // Numbers with larger exponents are returned unchanged since they // must be either an integer, infinity, or NaN. const half = 1 << (shift - 1) e -= bias bits += half >> e bits &^= fracMask >> e } return Float32frombits(bits) } // RoundToEven returns the nearest integer, rounding ties to even. // // Special cases are: // RoundToEven(±0) = ±0 // RoundToEven(±Inf) = ±Inf // RoundToEven(NaN) = NaN func RoundToEven(x float32) float32 { // RoundToEven is a faster implementation of: // // func RoundToEven(x float64) float64 { // t := math.Trunc(x) // odd := math.Remainder(t, 2) != 0 // if d := math.Abs(x - t); d > 0.5 || (d == 0.5 && odd) { // return t + math.Copysign(1, x) // } // return t // } bits := Float32bits(x) e := uint(bits>>shift) & mask if e >= bias { // Round abs(x) >= 1. // - Large numbers without fractional components, infinity, and NaN are unchanged. // - Add 0.499.. or 0.5 before truncating depending on whether the truncated // number is even or odd (respectively). const halfMinusULP = (1 << (shift - 1)) - 1 e -= bias bits += (halfMinusULP + (bits>>(shift-e))&1) >> e bits &^= fracMask >> e } else if e == bias-1 && bits&fracMask != 0 { // Round 0.5 < abs(x) < 1. bits = bits&signMask | uvone // +-1 } else { // Round abs(x) <= 0.5 including denormals. bits &= signMask // +-0 } return Float32frombits(bits) }