mirror of
https://github.com/make-42/xyosc
synced 2025-01-19 02:57:34 +01:00
153 lines
3.4 KiB
Go
153 lines
3.4 KiB
Go
/*
|
|
* Copyright (c) 2012 Matt Jibson <matt.jibson@gmail.com>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
// Package window provides window functions for digital signal processing.
|
|
package window
|
|
|
|
import (
|
|
"math"
|
|
)
|
|
|
|
// Apply applies the window windowFunction to x.
|
|
func Apply(x []float64, windowFunction func(int) []float64) {
|
|
for i, w := range windowFunction(len(x)) {
|
|
x[i] *= w
|
|
}
|
|
}
|
|
|
|
// Rectangular returns an L-point rectangular window (all values are 1).
|
|
func Rectangular(L int) []float64 {
|
|
r := make([]float64, L)
|
|
|
|
for i := range r {
|
|
r[i] = 1
|
|
}
|
|
|
|
return r
|
|
}
|
|
|
|
// Hamming returns an L-point symmetric Hamming window.
|
|
// Reference: http://www.mathworks.com/help/signal/ref/hamming.html
|
|
func Hamming(L int) []float64 {
|
|
r := make([]float64, L)
|
|
|
|
if L == 1 {
|
|
r[0] = 1
|
|
} else {
|
|
N := L - 1
|
|
coef := math.Pi * 2 / float64(N)
|
|
for n := 0; n <= N; n++ {
|
|
r[n] = 0.54 - 0.46*math.Cos(coef*float64(n))
|
|
}
|
|
}
|
|
|
|
return r
|
|
}
|
|
|
|
// Hann returns an L-point Hann window.
|
|
// Reference: http://www.mathworks.com/help/signal/ref/hann.html
|
|
func Hann(L int) []float64 {
|
|
r := make([]float64, L)
|
|
|
|
if L == 1 {
|
|
r[0] = 1
|
|
} else {
|
|
N := L - 1
|
|
coef := 2 * math.Pi / float64(N)
|
|
for n := 0; n <= N; n++ {
|
|
r[n] = 0.5 * (1 - math.Cos(coef*float64(n)))
|
|
}
|
|
}
|
|
|
|
return r
|
|
}
|
|
|
|
// Bartlett returns an L-point Bartlett window.
|
|
// Reference: http://www.mathworks.com/help/signal/ref/bartlett.html
|
|
func Bartlett(L int) []float64 {
|
|
r := make([]float64, L)
|
|
|
|
if L == 1 {
|
|
r[0] = 1
|
|
} else {
|
|
N := L - 1
|
|
coef := 2 / float64(N)
|
|
n := 0
|
|
for ; n <= N/2; n++ {
|
|
r[n] = coef * float64(n)
|
|
}
|
|
for ; n <= N; n++ {
|
|
r[n] = 2 - coef*float64(n)
|
|
}
|
|
}
|
|
|
|
return r
|
|
}
|
|
|
|
// FlatTop returns an L-point flat top window.
|
|
// Reference: http://www.mathworks.com/help/signal/ref/flattopwin.html
|
|
func FlatTop(L int) []float64 {
|
|
const (
|
|
alpha0 = float64(0.21557895)
|
|
alpha1 = float64(0.41663158)
|
|
alpha2 = float64(0.277263158)
|
|
alpha3 = float64(0.083578947)
|
|
alpha4 = float64(0.006947368)
|
|
)
|
|
|
|
r := make([]float64, L)
|
|
|
|
if L == 1 {
|
|
r[0] = 1
|
|
return r
|
|
}
|
|
|
|
N := L - 1
|
|
coef := 2 * math.Pi / float64(N)
|
|
|
|
for n := 0; n <= N; n++ {
|
|
factor := float64(n) * coef
|
|
|
|
term0 := alpha0
|
|
term1 := alpha1 * math.Cos(factor)
|
|
term2 := alpha2 * math.Cos(2*factor)
|
|
term3 := alpha3 * math.Cos(3*factor)
|
|
term4 := alpha4 * math.Cos(4*factor)
|
|
|
|
r[n] = term0 - term1 + term2 - term3 + term4
|
|
}
|
|
|
|
return r
|
|
}
|
|
|
|
// Blackman returns an L-point Blackman window
|
|
// Reference: http://www.mathworks.com/help/signal/ref/blackman.html
|
|
func Blackman(L int) []float64 {
|
|
r := make([]float64, L)
|
|
if L == 1 {
|
|
r[0] = 1
|
|
} else {
|
|
N := L - 1
|
|
for n := 0; n <= N; n++ {
|
|
const term0 = 0.42
|
|
term1 := -0.5 * math.Cos(2*math.Pi*float64(n)/float64(N))
|
|
term2 := 0.08 * math.Cos(4*math.Pi*float64(n)/float64(N))
|
|
r[n] = term0 + term1 + term2
|
|
}
|
|
}
|
|
return r
|
|
}
|