mirror of
https://github.com/make-42/xyosc
synced 2025-01-19 11:07:35 +01:00
217 lines
5.1 KiB
Go
217 lines
5.1 KiB
Go
|
/*
|
||
|
* Copyright (c) 2011 Matt Jibson <matt.jibson@gmail.com>
|
||
|
*
|
||
|
* Permission to use, copy, modify, and distribute this software for any
|
||
|
* purpose with or without fee is hereby granted, provided that the above
|
||
|
* copyright notice and this permission notice appear in all copies.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
package dsputils
|
||
|
|
||
|
// Matrix is a multidimensional matrix of arbitrary size and dimension.
|
||
|
// It cannot be resized after creation. Arrays in any axis can be set or fetched.
|
||
|
type Matrix struct {
|
||
|
list []complex128
|
||
|
dims, offsets []int
|
||
|
}
|
||
|
|
||
|
// MakeMatrix returns a new Matrix populated with x having dimensions dims.
|
||
|
// For example, to create a 3-dimensional Matrix with 2 components, 3 rows, and 4 columns:
|
||
|
// MakeMatrix([]complex128 {
|
||
|
// 1, 2, 3, 4,
|
||
|
// 5, 6, 7, 8,
|
||
|
// 9, 0, 1, 2,
|
||
|
//
|
||
|
// 3, 4, 5, 6,
|
||
|
// 7, 8, 9, 0,
|
||
|
// 4, 3, 2, 1},
|
||
|
// []int {2, 3, 4})
|
||
|
func MakeMatrix(x []complex128, dims []int) *Matrix {
|
||
|
length := 1
|
||
|
offsets := make([]int, len(dims))
|
||
|
|
||
|
for i := len(dims) - 1; i >= 0; i-- {
|
||
|
if dims[i] < 1 {
|
||
|
panic("invalid dimensions")
|
||
|
}
|
||
|
|
||
|
offsets[i] = length
|
||
|
length *= dims[i]
|
||
|
}
|
||
|
|
||
|
if len(x) != length {
|
||
|
panic("incorrect dimensions")
|
||
|
}
|
||
|
|
||
|
dc := make([]int, len(dims))
|
||
|
copy(dc, dims)
|
||
|
return &Matrix{x, dc, offsets}
|
||
|
}
|
||
|
|
||
|
// MakeMatrix2 is a helper function to convert a 2-d array to a matrix.
|
||
|
func MakeMatrix2(x [][]complex128) *Matrix {
|
||
|
dims := []int{len(x), len(x[0])}
|
||
|
r := make([]complex128, dims[0]*dims[1])
|
||
|
for n, v := range x {
|
||
|
if len(v) != dims[1] {
|
||
|
panic("ragged array")
|
||
|
}
|
||
|
|
||
|
copy(r[n*dims[1]:(n+1)*dims[1]], v)
|
||
|
}
|
||
|
|
||
|
return MakeMatrix(r, dims)
|
||
|
}
|
||
|
|
||
|
// Copy returns a new copy of m.
|
||
|
func (m *Matrix) Copy() *Matrix {
|
||
|
r := &Matrix{m.list, m.dims, m.offsets}
|
||
|
r.list = make([]complex128, len(m.list))
|
||
|
copy(r.list, m.list)
|
||
|
return r
|
||
|
}
|
||
|
|
||
|
// MakeEmptyMatrix creates an empty Matrix with given dimensions.
|
||
|
func MakeEmptyMatrix(dims []int) *Matrix {
|
||
|
x := 1
|
||
|
for _, v := range dims {
|
||
|
x *= v
|
||
|
}
|
||
|
|
||
|
return MakeMatrix(make([]complex128, x), dims)
|
||
|
}
|
||
|
|
||
|
// offset returns the index in the one-dimensional array
|
||
|
func (s *Matrix) offset(dims []int) int {
|
||
|
if len(dims) != len(s.dims) {
|
||
|
panic("incorrect dimensions")
|
||
|
}
|
||
|
|
||
|
i := 0
|
||
|
for n, v := range dims {
|
||
|
if v > s.dims[n] {
|
||
|
panic("incorrect dimensions")
|
||
|
}
|
||
|
|
||
|
i += v * s.offsets[n]
|
||
|
}
|
||
|
|
||
|
return i
|
||
|
}
|
||
|
|
||
|
func (m *Matrix) indexes(dims []int) []int {
|
||
|
i := -1
|
||
|
for n, v := range dims {
|
||
|
if v == -1 {
|
||
|
if i >= 0 {
|
||
|
panic("only one dimension index allowed")
|
||
|
}
|
||
|
|
||
|
i = n
|
||
|
} else if v >= m.dims[n] {
|
||
|
panic("dimension out of bounds")
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if i == -1 {
|
||
|
panic("must specify one dimension index")
|
||
|
}
|
||
|
|
||
|
x := 0
|
||
|
for n, v := range dims {
|
||
|
if v >= 0 {
|
||
|
x += m.offsets[n] * v
|
||
|
}
|
||
|
}
|
||
|
|
||
|
r := make([]int, m.dims[i])
|
||
|
for j := range r {
|
||
|
r[j] = x + m.offsets[i]*j
|
||
|
}
|
||
|
|
||
|
return r
|
||
|
}
|
||
|
|
||
|
// Dimensions returns the dimension array of the Matrix.
|
||
|
func (m *Matrix) Dimensions() []int {
|
||
|
r := make([]int, len(m.dims))
|
||
|
copy(r, m.dims)
|
||
|
return r
|
||
|
}
|
||
|
|
||
|
// Dim returns the array of any given index of the Matrix.
|
||
|
// Exactly one value in dims must be -1. This is the array dimension returned.
|
||
|
// For example, using the Matrix documented in MakeMatrix:
|
||
|
// m.Dim([]int {1, 0, -1}) = []complex128 {3, 4, 5, 6}
|
||
|
// m.Dim([]int {0, -1, 2}) = []complex128 {3, 7, 1}
|
||
|
// m.Dim([]int {-1, 1, 3}) = []complex128 {8, 0}
|
||
|
func (s *Matrix) Dim(dims []int) []complex128 {
|
||
|
inds := s.indexes(dims)
|
||
|
r := make([]complex128, len(inds))
|
||
|
for n, v := range inds {
|
||
|
r[n] = s.list[v]
|
||
|
}
|
||
|
|
||
|
return r
|
||
|
}
|
||
|
|
||
|
func (m *Matrix) SetDim(x []complex128, dims []int) {
|
||
|
inds := m.indexes(dims)
|
||
|
if len(x) != len(inds) {
|
||
|
panic("incorrect array length")
|
||
|
}
|
||
|
|
||
|
for n, v := range inds {
|
||
|
m.list[v] = x[n]
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Value returns the value at the given index.
|
||
|
// m.Value([]int {1, 2, 3, 4}) is equivalent to m[1][2][3][4].
|
||
|
func (s *Matrix) Value(dims []int) complex128 {
|
||
|
return s.list[s.offset(dims)]
|
||
|
}
|
||
|
|
||
|
// SetValue sets the value at the given index.
|
||
|
// m.SetValue(10, []int {1, 2, 3, 4}) is equivalent to m[1][2][3][4] = 10.
|
||
|
func (s *Matrix) SetValue(x complex128, dims []int) {
|
||
|
s.list[s.offset(dims)] = x
|
||
|
}
|
||
|
|
||
|
// To2D returns the 2-D array equivalent of the Matrix.
|
||
|
// Only works on Matrixes of 2 dimensions.
|
||
|
func (m *Matrix) To2D() [][]complex128 {
|
||
|
if len(m.dims) != 2 {
|
||
|
panic("can only convert 2-D Matrixes")
|
||
|
}
|
||
|
|
||
|
r := make([][]complex128, m.dims[0])
|
||
|
for i := 0; i < m.dims[0]; i++ {
|
||
|
r[i] = make([]complex128, m.dims[1])
|
||
|
copy(r[i], m.list[i*m.dims[1]:(i+1)*m.dims[1]])
|
||
|
}
|
||
|
|
||
|
return r
|
||
|
}
|
||
|
|
||
|
// PrettyClose returns true if the Matrixes are very close, else false.
|
||
|
// Comparison done using dsputils.PrettyCloseC().
|
||
|
func (m *Matrix) PrettyClose(n *Matrix) bool {
|
||
|
// todo: use new slice equality comparison
|
||
|
for i, v := range m.dims {
|
||
|
if v != n.dims[i] {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return PrettyCloseC(m.list, n.list)
|
||
|
}
|